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I Quasi-Linear Integrability

I.1 Statement of the Theorem

Our goal is to prove the following result:

Theorem 1. Let N be a finite and non-empty set. For every k € N, let hy, (resp. gi) be a
C? (resp. C') function from Ry, to R, . Suppose that b}, < 0 for every k. Define demand
system D as follows:

Gk (pk)

. — _ JR\PRJ ) N
Dy (1)) sy EN Yl €Y

The following assertions are equivalent:
(i) D is quasi-linearly integrable.

(i) There exists a strictly positive scalar « such that, for every k € N, gr = —ahj,.
Moreover, hi, > 0 for every k € N', and Y o W < D pen k-

When this is the case, function v(.) is an indirect subutility function for the associated demand

system if and only if there exists € R such that v(p) = alog (Zje/\/ h/j(pj)) + B for every
p>> 0.

I.2 Preliminary Technical Lemmas

We first state and prove two preliminary technical lemmas, which will be useful to prove
Theorem I:

Lemma I. For every n > 1, for every (a;),;<, € R", define

1-— (5] 1
1 l—«
M ((O‘i>1gi§n) = ) . ?

n

det (M (()1<ic,)) = (=1)" (f[ ak) - Z H Xk

j=1 \ 1<k<n
k#j

'We adopt the convention that the product of an empty collection of real numbers is equal to 1.



Moreover, matriz M ((O‘i)lgign) 1s negative semi-definite if and only if a; > 1 for all 1 <

1 <n and
n

Z&gl.

=1

Proof. We prove the first part of the lemma by induction on n > 1. Start with n = 1. Then,
det (M ((@i)y<icp)) =1 — a1 = (=) (an = 1),

so the property is true for n = 1.
Next, let n > 2, and assume the property holds for all 1 < m < n. By n-linearity of the

determinant,
1 1 1 1 1
0 1—ag --- 1 1 1—ay
det (M (@) 1<icn)) = (—1) : : . : + . :
0 1 e 1l—ay 1 1 e l—ay

Applying Laplace’s formula to the first column, we can see that the first determinant is,
in fact, equal to det (/\/l ((ozi)2 <i<n)). The second determinant can be simplified by using
n-linearity one more time:

1 1 1 0

1 1—ay 11 .-

. . = —Q9 . . . . + . . . . )
1 1 e 11— 10 -+ 1—aqa, 11 - 1—-aq

= —Q09 det (M (07 (ai)Sgign)) + O’

where the second line follows again from Laplace’s formula and from the fact that the first
two rows of the second matrix in the first line’s right-hand side are colinear. Therefore,

det M ((ai)1§i§n> = — apdet (./\/l ((ai)2§i§n)) — ag det (./\/l (0, (O‘i)sgign)) ,

= — al(—l)"_l <H Oék> — Z H Q.
k=2 j=2 2§kl;§n

—ap(=1)" 10— H ak> :
k=3



n n n
= (—1)” (H Ckk) — H (73 — H (673 y
k=1 j=2 I%ZSn k=2
J

3

n
~cor | (o) - 30| T o
k=1 j=1 \ 1<k<n
iy
We now turn our attention to the second part of the lemma. Assume first that matrix
M ((ai)l <Z.<n) is negative semi-definite. Then, all its diagonal terms have to be non-positive,
ie., a; > 1 for all i. Besides, the determinant of this matrix should be non-negative (resp.
non-positive) if n is even (resp. odd). Put differently, the sign of the determinant should be
(=1)™ or 0. Since the «’s are all different from zero, this determinant can be simplified as

follows:
det (M (i) <)) = (=1)" (H ak) (1 > 0%) '

This expression has sign (—1)" or 0 if and only if 3 7 | - < 1.
Conversely, assume that the a’s are all > 1, and that > n_1 o < 1. The characteristic
polynomial of matrix M ((o), <i Sn) is defined as

1-0&1—X 1
1 1-0[2—X
PX)=| . |
1 1 e 1l—a, =X

This determinant can be calculated using the first part of the lemma. For every X > 0,

v ([l o) (L)

k=1
>0
- "1
> Oék—i—X 1— — 1,
({Tew0) (127
>0 >0
> 0.

Therefore, P(X) has no strictly positive root, matrix M ((c),,,) has no strictly positive
eigenvalue, and this matrix is therefore negative semi-definite. O]

Lemma II. Let M be a symmetric n-by-n matriz, X\ # 0, and 1 < k < n. Let A be the
matrix obtained by dividing the k-th line and the k-th column of M by A. Then, M is negative



semi-definite if and only if A¥ is negative semi-definite.

Proof. Suppose M is negative semi-definite, and let X € R". Write A* as (aij)1<ij<n and M
as (mi;), <ij<n- Finally, define Y as the n-dimensional vector obtained by dividing X’s k-th
component by A. Then,

X/AkX = Zn: Zn: Qi TiTj,

i=1 j=1
2
= E E ity |+ 2x E AikTi + T Ok,
1<i<n 1<j<n 1<i<n
itk 4k itk
Tp T\ 2
= g E M T +27 g MkT; + ) ks
1<i<n 1<j<n 1<i<n
ok 4k F
2
= g E miyiy; | + 2y E MikYi + Y Mgk,
1<i<n 1<j<n 1<i<n
ik 4k itk
=Y'MY,

< 0, since M is negative semi-definite.

Therefore, A* is negative semi-definite.
The other direction is now immediate, since M can be obtained by dividing the k-th line
and the k-th column of matrix A* by 1/\. O

1.3 Proof of Theorem I

Proof. To simplify notation, assume without loss of generality that N = {1,...,n}, and let
D(.) be the demand system associated with the demand component under consideration. For

every p >> 0, put J(p) = (%(p)) . Theorem 1 in Nocke and Schutz (2016) states
1<i,j<n

that D is quasi-linearly integrable if and only if J(p) is symmetric and negative semi-definite

for every p >> 0.

We first show that matrix J(p) is symmetric for every p if and only if there exists a strictly

positive scalar o such that, for every k € N, g, = —ahj. If J(p) is symmetric for every p,
then, for every 1 < 4,7 < n such that ¢ # j, for every p >> 0,
1 (p5)gi(pi) hi(pi)g; (ps)

s =Jij(p) = Jji(p) = —

B (Zkef\/ hk(pk>) (ZkeN hk(pk))Q.



It follows that, for every 1 <1 < n, for every x > 0,

- = ()

If B =0, then h; = 0 for every ¢, which violates the assumption that h; is strictly decreasing.
Therefore, 5 # 0, and we can define « = 1/4. It follows that g; = —ahl. Since g; > 0 and
R, < 0, we can conclude that o > 0. Conversely, if there exists a strictly positive scalar «
such that, for every k € N, g, = —ahj,, then, for every 1 <i,j <n, i # j, for every p >> 0,
h; (Pj )i (pi) h;' (pj)hé(pi)
Ji,j(p) = - 7 — 5 — Jj,i(p):
(Cken iuor)”™ (Eew hu(pr))

and matrix J(p) is therefore symmetric for every p.

Next, suppose that there exists a > 0 such that, for every 1 < k < n, g = —ahj. We
want to show that J(p) is negative semi-definite for every p >> 0 if and only if A} > 0 for
every 1 <k <n,and > ;v <> o I

Fix p >> 0. To ease notation, we write hj, = hy(pi) for every k, and define H = ), _ - .
We obtain the following expression for matrix J(p):

()" —R{H — Mhy - BGR,

P oy () —hYH - Bl

(p)—m : : :
) N A

J(p) is negative semi-definite if and only if

(h)* —hiH hihy a hih,
hyhy (hy)* —h5H - hyhi,
h b, T o (W)t =i H

is negative semi-definite. Applying Lemma II n times (by dividing row &k and column k by
hi, 1 <k <n), this is equivalent to matrix

ny
1 —(hll)QH 1h“ 1
- 2
1 1 (hé)g 1
wy
1 1 1-— WH



A
(m)"

7\2
k<n,and + >}, UZL,,) < 1. This is equivalent to h} > 0 for all k, and > 7, v < > _p_; Iy
k

being negative semi-definite. By Lemma I, this holds if and only if H>1foralll <

Finally, Nocke and Schutz (2016) show that, v is an indirect subutility function for demand
system D if and only if Vv = —D. Clearly, this is equivalent to

v(p) = alog (Z hj(pj)> + B, Vp>>0,
JeEN
where 5 € R is a constant of integration. O

Proposition 1 is then an immediate corollary of Theorem I.

II Pricing Game: Preliminaries

II.1 Preliminary Technical Lemma

Let H be the set of C3, strictly decreasing and log-convex functions from R, to R, . Let
H* be the set of functions h € H that satisfy Assumption 1. Define the following differential
operators:

° v(h) _ th/h//.
o «(h)(p) = ph"(p)/(=I) for every p > 0.
o p(h) =h/~.

We will need the following technical lemma:
Lemma I11. If h € H, then:
(a) lim, o ph/(p) = limy A’ = 0.
Moreover, if h € H', then:

(b) There exists a unique scalar p(h) > 0 such that for every p >0, (h)(p) > 1 if and only
if p> p(h). Moreover, («(h))" (p) >0 for all p > p(h).

(¢) p(h) =limy,o0 t(h)(p) > 1.

(d) For every p > p(h), (v(h))" (p) < 0.

(e) limy o y(R)(p) = 0.

(f) If lime b = 0 and fi(h) < oo, then lim,, o p(h)(p) = 5.

Proof. In the following, we drop argument A from functions 7, ¢, p, p and j to ease notation.

8



(a) We first show that lim, .. ph’(p) exists. By the fundamental theorem of calculus, for
every p > 0,

) = b)) + [ W(a)dz = (1) + pl )~ (V) ~ [ ah(z)da,
1 1

where the second line was obtained by integrating by parts. Therefore, ph'(p) = h(p)—h(1)+
W(1)+ [ xh”(x)dz. Since his positive and decreasing, it has a finite limit at co. We now show
that [ zh”(z)dz also has a limit at infinity. Since h is log-convex, (logh)” = h"f;l—gha > 0.
It follows that h” > 0. Therefore, function p — [ zh”(x)dz is non-decreasing, and that
function has a limit at infinity. It follows that lim, . ph’(p) exists. Since b’ < 0, that limit
is non-positive.

Assume for a contradiction that lim, . ph'(p) < 0. Then, there exist £g > 0 and py > 0
such that ph/(p) < —g for all p > py. Rewrite this inequality as h'(p) < —e&o/p, and integrate
it between p” and p to get

h(p) — h(po) < —eolog <£) — —o0.
pO p—00
Therefore, lim,, h = —oo. This contradicts the assumption that A > 0.
Therefore, lim,_,o, ph/(p) = 0, and lim,, h = 0.

(b) Assume for a contradiction that ¢(p) < 1 for all p > 0. Then, for all p > 0, ph”(p) +

R (p) <0, ie., % (ph/(p)) < 0. It follows that ph'(p) < K'(1) for all p > 1. Taking the limit

as p goes to infinity and using point (a), we obtain that A'(1) > 0, a contradiction.
Therefore, there exists p > 0 such that ¢(p) > 1, and

p=inf{pe Ry, : «(p) > 1} <oo.

We prove two claims:
Claim 1: p ¢ {p>0: «(p) > 1}.

If p = 0, then this is obvious. If instead p > 0, then the claim follows immediately from
the continuity of «.

Claim 2: (y) > «(x) whenever 0 < x < y and «(x) > 1.

Assume for a contradiction that «(y) < ¢(z). Put S = {z € [z,y]: u(z) <1}. If S is
empty, then ¢(z) > 1 for every z € [z,y]. Since h € H*, //(z) > 0 for every z € [z,y], and ¢ is
non-decreasing on interval [z, y|. It follows that ¢(y) > ¢(x), which is a contradiction.

Next, assume that S is not empty. Then, y = inf S € [z,y]. Moreover, by continuity of
t, and since ¢(z) > 1, () = 1. In addition, ¢(z) > 1 for every z € [z,7). Using the same
reasoning as above, it follows that

1 =wu(9) > w(z) > 1,



which is a contradiction.

Combining Claims 1 and 2, it follows that {z > 0: «(z) > 1} = (p,00), and that ¢ is
non-decreasing on (g, oo), which proves point (b).

(c) Since ¢ is monotone on (p, o), fi exists. Assume for a contradiction that i < 1. Then,
by monotonicity, «(p) < it <1 for every p > p. This contradicts point (b).

(d) Let p > p. Notice that

Therefore,

—_

v'(p) = 5 (= (ph"(p) + 1’ (p)) x o(p) + ' (p) x ph'(p)),
(¢(p))
1

= ——— (=1 (p) (1 —u(p)) t(p) + {'(p)pH (p)) < 0,
(¢(p))

as ¢/ > 0 and «(p) > 1 for all p > p.

(e) The result follows immediately from the fact that v(p) = —ph'(p)/ic(p) (see above),
lim, . ph/(p) = 0 (point (a)), and lim,, ¢ > 0 (point (c)).

(f) Suppose i < oo and lim, h = 0. For all p > p,

h(p)h"(p) _ ph"(p) _h(p)
(W'(p)*  —I(p) —ph'(p)

h(p)
—ph'(p)’

p(p) = = 1(p)

By assumption, lim,, » = 0. By point (a), lim, ., —ph/(p) = 0. Moreover,

lim M = lim W(p) = lim ! = 1 .
v D(phi(p)) oo —H(p) —ph'(p)  wosoulp)—1  fi—1

Therefore, by L’Hospital’s rule, lim,,_, = ,il, and limy, p = ﬂl O

—ph’(p) i -1

II.2 About the (Log)-Supermodularity of Payoff Functions

Fix a pricing game ((h;)jen, F, (¢j)jen), and let f € F such that |f| > 2. Fix a vector of
prices for firm f’s rivals (p;)jean s, and let H° = 3= .. hj(p;). We introduce the following

notation: v;(p;) = ’%Li(pi) for every 7 and p; > 0.

10



We first show that I/ is neither supermodular nor submodular in (p;);es. Let i # k in f.

217/ —hi(p;
011 9 ( hépl) (1—ui(pz-)+Hf(p))>»

Op:Opr Opr
—hj, 1 —h
h'h
:—;{2’“ (1—v+ 1)+ (1 — vy +117)), (id)

where we have used the expression of marginal profit derived in equation (4).

Assume in addition that firm f’s profile of prices satisfies the constant (-markup property.
Then, equation (ii) can be simplified as follows:

oM 2mK, (

1
apopn  HE \ 1T W+ gﬂfZ%(m(uf))> :

Jef

_2%?;“ ((uf —1) (HO + Z’%’(W(MU)) —Mfz%‘(fj(uf))> :

jef Jjef

[ J/

=o(u!)

We have shown in the proof of Lemma F that ¢(u/) is strictly positive when p/ is large, and
strictly negative when pf is small. It follows that II/ is neither supermodular nor submodular
in (pj)jes-

Next, we show that II/ is neither log-supermodular nor log-submodular in (p;);c;. Let

i # kin f.

Plogll! 9 [ —hi—(pi—c)hi  —hj

OpiOpy, N Opx, (Zjef(pj = ¢;)(=h}) H ) ’

(=hi = (pi — ci)hi) (=hi — (e — ) y) | hiky,
(Ejgf(l?j - Cj)(—hQ-))Z e

Again, if firm f’s profile of prices has the constant (-markup property, then
P mp (L (1Y
Op;Opi. H? I/ '

w1 ¢(1’)
I/ w3 e i(ri(nd))

Note that

11



Let u/* be the unique solution of equation ¢(u/) = 0. Then, by continuity, for u/ close enough
to u/* and strictly below u/*, (u/ —1)/11/ € (0,1), and, therefore, 9*11/ /Op;Opy > 0. For uf
close enough to u/* and strictly above p/*, (u/ —1)/I1/ > 1, and, therefore, 9*11/ /p;Op;, < 0.
Therefore, I17 is neither log-supermodular nor log-submodular in (p;);ec;-.

IIT Assumption 1 and First-Order Conditions

The goal of this section is to formalize and prove our statement that Assumption 1 is the
weakest assumption under which an approach based on first-order conditions is valid.

IT11.1 Definitions and Statement of the Theorem

We first define a multiproduct firm as a collection of products, along with a constant unit
cost for each product:

Definition 1. A multiproduct firm is a pair ((hj)en, (¢j)jen), where N = {1,...,n} is a
finite and non-empty set, and for every j € N, h; € H, and ¢; > 0.2 The profit function
associated with multi-product firm M is:

Vp e RY,, VH® > 0.

AN A7) = 2 =) »GN_fZI?ZI;)+ HO

As in the paper, H represents the value of the outside option. Our goal is to derive
conditions under which profit function II(M)(-, H°) is well-behaved.

In the following, it will be useful to study multiproduct firms that can be constructed
from a set of products (i.e., a set of indirect subutility functions) smaller than H:

Definition 2. The set of multiproduct firms that can be constructed from set H' C H is:

MH)= ] (H"xR},).

neNL 4
We can now define well-behaved multiproduct firms and well-behaved sets of products:

Definition 3. We say that multiproduct firm M € M (H) is well-behaved if for every
(p, H°) € R™ V1T (M) (p, H°) = 0 implies that p is a local mazimizer of IL(M) (., H°).
We say that product set H' C H is well-behaved if every M € M (H') is well-behaved.

Put differently, a set of products is well-behaved if for every multiproduct firm that can be
constructed from this set, for every value the outside option H can take, first-order conditions
are sufficient for local optimality. In the following, we look for the “largest” well-behaved set
of products, where the meaning of “large” will be made more precise shortly.

2Recall from Section II that H is the set of strictly decreasing, C* and log-convex functions from R, to
R++.

12



We define the set of CES products as follows:
HOES = {heH: F(a,0)eRis x(1,00)s.t. Vp>0, h(p) =ap' °}.
We have shown in the paper that HEFS C H.

We are now in a position to state our theorem:

Theorem II. H' is the largest (in the sense of set inclusion) set H' C H such that HEFS C
H' and H' is well-behaved.

In words, H* is the largest set of products that contains CES products and that is well-
behaved. Rephrasing this result in terms of pricing games, this means that pricing games
based on sets of products larger than H* are not well-behaved, and that an aggregative games
approach based on first-order conditions is not valid.

I11.2 Proof of Theorem I1

We first make the dependence of function v, on marginal cost ¢ explicit by writing vy (pg, cx) =
p—kp;ck te(pr). (Function vy, was first defined in Section II.) Note that

Ovy, Ck Pe — Ck ,
— = —lPr) + L\ D). 111
a7 k(Pk) o +(Px) (iif)

)

In addition, since tx(px) = px ’E; ’; we also have that

Ovy, _ (Vk(pk, Ck) - 1) hﬁc(pk) - Vk(pk, Ck)rYll.c(pk). (iv)

Opi, Tk (pk)

Differentiating the monopolist’s profit with respect to p, we obtain:

OIL (M) —hy(pe) Dk — Ck —h" ,(pj)
— 1 — —
Opy, H Dk + Z ) ’

JEN

S z<>§1)> | :

JEN

where H = Zj env hi(py) +H 0. Therefore, if the first-order conditions hold at price vector p,
then, for every k in N\,

Vi(pg,cx) = 1+ Z vi(pj, cj)%j(_fj). (vi)
JEN

Since the right-hand side of the above equation does not depend on the identity of product
k, it follows that p satisfies the common-. markup property:

v(pi,ci) = v(pj,cj), Vi,jeN.

13



This allows us to rewrite the first-order condition for product k as follows:

ey ( Z% (p, > = 1. (vii)

JEN

Since we are interested in the sufficiency of first-order conditions for local optimality, we
need to calculate the Hessian of the monopolist’s profit function. This is done in the following
lemma:

Lemma IV. Let M € M (H), p >> 0 and H° > 0. IfV,II(M) (p, H®) = 0, then the Hessian
of IL(M) (., H®), evaluated at price vector p, is diagonal, with typical diagonal element

h;c (Pk) Ovy,
HO + 57 ien hi(p;) Opk

(pk7ck)-
Proof. Let M = <(hj>je/\/” (Cj)jeN) € M(H). Let p >> 0 and H° > 0, and suppose that
V II(M)(p, H°) = 0. For every 1 < k < n,

OII(M)  —1, ( ovg | 1 (auk ngwjh,»
_ SN Hp ) )

o H \ Om op E T T gy

—h, Oy, 1 (0v ,
(B (B )

_—h%(_%+i(% _Ou ))
H \ op ope ¥ ope *) )

_ Iy O
Hapk.

where the first line follows from differentiating equation (v) with respect to py and using
the fact that OII(M)/0p, = 0, the second line follows from equation (vii), and the third line
follows from equation (iv). Using the same method, we find that all the off-diagonal elements
of the Hessian matrix are equal to zero, which proves the lemma. O

The following lemma is an immediate consequence of Lemma IV and equation (iii):
Lemma V. Set H' is well-behaved.

Proof. Let M = ((hj)]-eN,(Cj)jeN) € M(H). Let p >> 0 and H° > 0, and suppose
that V,II(M)(p, H°) = 0. Then, by equation (vii), and by log-convexity of h; for every j,
Vk(pg,cx) > 1 for every 1 < k < n. It follows that tx(px) > 0 and py > ¢ for every k.
Therefore, by equation (iii) and since hy, € H*, Ovy/Opr, > 0. By Lemma IV, the Hessian of
II(M)(., H°) evaluated at price vector p is therefore negative definite. Therefore, the local

second-order conditions hold, p is a local maximizer of II(M)(., H°), M is well-behaved, and
H* is well-behaved. O
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The next step is to rule out products that are not in H*. This is done in the following
lemma:

Lemma VI. Let h € H\H'. Then, HE5 U {h} is not well-behaved.

Proof. Since h ¢ H', there exists p > 0 such that «(p) > 1 and /(p) < 0. Our goal is to
construct a two-product firm M = ((hq, hs), (¢1,¢2)), a price vector (p1,p2) € R%, and an
H > 0 such that V,II (M) ((p1, p2), H°) = 0 and %(pl’ c1) < 0. We begin by setting hy = h
and p; = p. We will tweak hs, pa, c1, ¢ and H? along the way.

Since ¢ (p1) < 0, equation (iii) implies that there exists ¢ € (0, p;) such that g—;i(pl, c1) <0
whenever ¢; < é.

For every s € (1,11(p1)), there exists a unique Ci(s) € (0, p;) such that

P1— 01(8) L1(p1)
D1 S

= 1. (viii)

Ci(+) is continuous and lim,,, ) C1(s) = 0. In particular, there exists s € (1,u1(p1))
such that Ci(s) € (0,¢) whenever s € (s,t1(p1)). It follows that, when s € (s,u1(p1)),
condition (viii) holds and % (p1,C1(s)) < 0.

Let 0 € (s,01(p1)), and ha(py) = py ° for all p, > 0. Recall that 15(p;) = o and
Y2(p2) = Ua;lh2(p2) for all p, > 0.

For every H® > 0, define the following function:

Yi(p1) + S

— Vo > 0.
hl(pl) +ZU+HO’ .

¢(z) =1
Notice that lim., ¢ = % Moreover,

(1) — & (h(pr) + HO)
(ha(pr) + @+ HO)?

¢'(x) =

Choose some H° such that v (p1) — <2 (hy(p1) + H°) < 0. Then, ¢/(z) < 0 for all z > 0.
Therefore, ¢(z) > L for all z > 0.
Let (p2,c2) € R2,. The first-order condition for product 2 can be written as follows:

P2 C (1_ 71(p1) +72(p2) ) 1
D2 hi(p1) + ha(p2) + H® ’

or, equivalently,
D2 — C2

D2

X o (p%_”) = 1.
—_———
>1, since ¢(z)>1/0

Therefore, for every py > 0, there exists a unique Cy(py) € (0, p2) such that the first-order
condition for product 2 holds.
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The first-order condition for product 1 can be written as follows:

p—c u(pr)
¢ (ph o)

Since ¢ (pé_")fl — 0 and o € (s,t1(p1)), there exists P» > 0 such that ¢ (PQI_UY1 €
p2—0

(s,t1(p1)). Put ¢ = C (cb (le"’)_1>. Then, the first-order condition for product 1 holds,
c1 € (0,¢), and therefore, %(pl,cl) < 0.

To summarize, we have constructed a multi-product firm M = ((hy, ha), (¢1,c2)) with
hy = h, he(z) = 2177, ¢, = C) <¢ (P;“’)fl) and ¢y = Cy(P;), an H® > 0 and a price vector
(p1,p2) = (p, P2) such that V,II(M) ((p1,p2), H’) = 0 and g—;i(pl,cl) < 0. By Lemma IV,
the Hessian matrix of II(M)(-, H®) evaluated at price vector (pi,p2) has a strictly positive

eigenvalue. Therefore, (p;,p2) is not a local maximizer of II(M)(-, H®), and multi-product
firm M is not well-behaved. It follows that H®S U {h} is not well-behaved. O

Combining Lemmas V and VI proves Theorem II.

III.3 A Remark on Single-Product Firms

We close this section by noting that multiproduct-firms are special, in the sense that, com-
pared to single-product firms, they require strictly stronger restrictions on the set of admis-
sible products to be well-behaved. This statement is formalized in the following proposition:

Proposition 1. Let h € H, ¢ > 0 and M = (h,c). The following assertions are equivalent:
(i) Firm M is well-behaved.
(i4) For every p > 0 such that t(h)(p) > 1, («(h)) (p) > 0 or (p(h)) (p) > 0.

Proof. Let h € H, ¢ > 0and M = (h, c). With single-product firms, first-order condition (vii)

can be simplified as follows:
Y .
V(l—h+H0):1. (ix)

By Lemma IV, 9*TII(M)/0p? has the same sign as dv/0p whenever condition (ix) holds.

Assume that (ii) holds. We want to show that, for every (p,c, H) € R3 | dv(p,c)/dp > 0
whenever condition (ix) holds. Let p > 0. If «(p) < 1, then for every ¢, H° > 0,

Y
1- <1
. ( h + H0> ’
so there is nothing to prove. Next, assume that ¢(p) > 1. For every ¢ > 0, dv/dp is given
by equation (iii). If J/(p) > 0, then dv(p,c)/dp > 0 for every H* > 0 and 0 < ¢ < p.
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In particular, dv(p,c)/0p > 0 when condition (ix) holds. (Recall that, by log-convexity,
vy <h+ H)
Assume instead that /(p) < 0. Then, since (ii) holds, p'(p) > 0. Notice that

ﬂl— lo L /—E/+L_/_1_|_ h//
p \Pm))) TR T T e T T

! J —n ) ! 1
pﬁzp——p —1+L=p————1+b=p——|—b(1——)—1.
p L h L p L P

It follows that

Since ¢/ < 0 and p’ > 0, it follows that ¢ <1 — %) —1>0.

Since ¢(p) > 1, we have that, for every H® > 0, there exists a unique ¢ (H°) such that
condition (ix) holds. This ¢ (H") is given by:

c(HO):I?(l—m)- (%)

Since ¢ <1 — %) —1>0,c(H® € (0,p) for every H® > 0. Notice also that ¢ (H°) > 0. All

we need to do now is check that

v c(H°)  p—c(H),

> (pe (1) = U 22U,

is strictly positive for every H® > 0. Since the right-hand side is strictly increasing in ¢ (H")
and ¢ (H®) > 0, this boils down to checking that dv (p, c(0)) /Op > 0:

S ) = & (B 20,0,
1

Ay

1

iy (e

which is indeed non-negative. Therefore, (i) holds.

Conversely, suppose that (ii) does not hold. There exists p > 0 such that «(p) > 1, /(p) <0
and p/(p) < 0. We distinguish two cases. Assume first that ¢ (1 - %) —1 > 0. Then, the
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¢ (HY) defined in equation (x) satisfies ¢(H°) € (0, p) and

_ 0
p—clll) (1 v Y _4
D h+ HO

for every H® > 0. In addition, as proven above,

v o/

By continuity, there exists ¢ > 0 such that g—; (p,c(e)) < 0. It follows that 8H§;\4) (p,e) =0
52
and 2 gp(éw )(p,e) > 0. Therefore, M is not well-behaved.
Next, assume that ¢ (1 — %) — 1 < 0. Then, there exists H* > 0 such that ¢ (H°) = 0.

Notice that g—; (p,0) = (p) < 0. Therefore, by continuity of dv/dp and ¢(.), for € > 0 small
enough,

v
p
and ¢ (H? +¢) > 0. Therefore, multiproduct firm (h, ¢ (H° + ¢)) is not well-behaved. O

(p,c (HO —I—e)) < 0,

IV Additive Aggregation and Demand Systems

IV.1 Characterization Result

Let G = (Z, (Ai)iez, (m:)iez) be a normal-form game. Suppose that each action space A; is a
cartesian product of intervals. We say that game G is aggregative with additive and smooth
aggregation if there exist collections of C? functions (;);ez and (¢;);ez such that for every
a = (aj)jer € [[;er Aj and i € Z,

mi(a) = ¢ (aiazq/]j(aj)) .
j€T
We prove the following proposition:

Proposition II. Let D : R{\A — R be a C? and quasi-linear demand system, where N is
a finite set containing at least three elements. Suppose that D satisfies Slutsky symmetry, and
that 0D;(p)/0p; # 0 for every i # j and p >> 0. The following assertions are equivalent:

(i) Any multiproduct-firm pricing game based on D is aggregative with smooth and additive
aggregation.
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(1i) There exist C* functions U, (g;)ien, and (h;)ien such that

D;(p) = —gi(pi) — hi(p:) ¥ (Zh ;) ) . VieN, Vp>>0. (xi)

JEN

Proof. Tt is obvious that (ii) implies (i). Assume that (i) holds, and consider the pricing game
with firm partition {{i}};car and zero marginal cost. Since (i) holds, there exist C? functions
®i(pi, H) and h;(p;) for every i such that, for every i € N/, the profit of firm {i} is given by:

H{z (pmzh bj > = Di Z<p)

JEN
It follows that

( = _Cbz (puzh Pj > =Ji (piaZhj(pj)> , Vi

jeN jeEN

Since 0D;/0p;(p) # 0, it follows that hi(p;) # 0 for every p;, and Of;(p;,
every p; and H.

By Slutsky symmetry, for every i # j,

H)/0H # 0 for

,0f; oD, 0oD; ,0f; y
h]8H< )_ ap] - apZ - ’LaH( H) (Xll)

Next, we differentiate the Slutsky condition with respect to py, k # i, j:

O fi 0 f
h'hﬁcaH2 = h’h}caH2
Since hj, # 0, it follows that
a2fz an
h EY7E =h, 8H; (xiii)
Next, differentiate the Slutsky condition with respect to p;:
h/ azfz + h/ h/ anz h//afj 4 h/2 azfj

T0p;0oH 7 "OH? ‘OH ' OH?*

Therefore, using equation (xiii),

2 )
P Ol
iop0H | OH
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Next, we use equation (xii) to eliminate df;/0H and h}. This yields:

0% fi
ang@wH) - h_;’

0L (ps, H) — hyi

The above condition must hold for every (p;, H) in the domain of f;. Note that it depends
only on p; and H (and not on p; for j # 7). Integrating this partial differential equation, we

of; ,
2% o1, H) = H(pACH),

where \;(H) is a constant of integration. Integrating once more, we obtain:

obtain:

filpi, H) = hi(pi) Ai(H) + g;(ps),
where A; is an anti-derivative of \;, and ¢} is a constant of integration. Therefore,
D;(p) = hi(pi)A (Zh pj>+glpz) Vi.
jeN

Next, we use Slutsky symmetry one more time:

WO N(H) = KRN (HD).

(2 A2 (2 |

Therefore, A; and A; differ by an additive constant, which we can safely ignore (or, rather,
incorporate in the g; functions). It follows that (ii) holds. O

IV.2 The Generalized Common (-Markup Property

Fix a pricing game based on demand system (xi). It is easy to show that a generalized form
of the constant -markup property still holds. Let f € F and ¢ € f. Then,

oIf
p —WW' — gf — (pi — ) (W)Y + g!) = (p; — ;)W hy”.
7 Jjef

Therefore, at any optimum,

pi — Ci 9i(pi) + (i —ci)g!(pi) . V'(H) )
o Li(pi) — 1 (o) V' (H) =1+ V' (H) ;(p — ;) (pi) -

Note that the left-hand side of the above condition only depends on p; and H, whereas the
right-hand side, which we call 44/, is independent of the identity of product i. Therefore, for a
given aggregator level H, firm f’s optimal strategy can still be summarized by uni-dimensional
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sufficient statistic ;/. Note that the corresponding pricing function 7; now depends on H
and p/, which complicates the analysis.

V  Proof of Proposition 7

Proof. 1t is straightforward to show, using standard differential equation techniques, that
—a:?;,/((j)) = 1(z) for all x if and only if h = h%” for some o # 0 and 3 € R. All we need to do
now is look for the set of pairs (o, 3) such that h*# € H*.

Note that, for all «, 3,
he?'(x) = —aexp (_/ L(_U)d“> ’
1 u

i.e., h*? has the same sign as —a. It follows that A%? cannot be in H* if & < 0. In addition,
if h*?# € H* for some a > 0 and § € R, then h*# € H* for all o/ > 0. Therefore, we can set
a equal to 1 without loss of generality.

The problem now boils down to finding the set of $’s such that h® = h'? is strictly
positive, decreasing and log-convex. We already know that A% < 0. Therefore, the fact that

h” has to be decreasing does not impose any constraint on £3.

Next, we show that lim,, h° (which exists, since h° is monotone) is finite and strictly
negative. It is trivial to see that this limit is strictly negative. Let 2° > 0 such that 7(z%) > 1.
Proving that lim, h° is finite is equivalent to showing that function ¢ — exp (— flt T(U—“)du> is

0

integrable on [z°, 00). For every ¢ > 2°,

0 ~

oo (= [ M) < ey (_ J wZO)du) |

~ exp <_ /1 ' z%m) exp (—z(x(’) log (%)) S ()
( I Qd) ()

The last expression is integrable on [2°, 00), since 7(2°) > 1. Therefore, t — exp (— 1t 7(T“)alu)

is integrable on [2°, 00) and 3 = lim, h° is finite and strictly negative. It follows that function

h? is strictly positive if and only if § > B
Let g > . Then,

B (o Bit( ARB(z) — (B8 (2))° _hB WP
d W) @) a) (h())_lh()<7() )

do WB(z) 1 (z)? 1 mP) \" T TR )
Therefore, h? is log-convex if and only if 7(x) > x_,if(,g) for all z > 0. Since h”(z) increases
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with 8 and h#(x) does not depend on 3, it follows that, if h? is log-convex and ' > f3, then
h?" is also log-convex.
Moreover, using (xiv), we see that, for every z > 2°,

—2h? (2) < zexp (— /JCO @du) <£> e
— 1 U ,Z'O )
CCO > ~
= exp (—/ —L(u) du) (:EO)L(‘TO) g ) 0,
1 u T—00

where the last line follows from the fact that 7(z°) > 1.

Let 8 > 3. Then, limy, h? > 0, and therefore, limx%oox—;;( (9)6) _
follows that there exists & such that 7(z) > x h;( (;)r whenever x > 2. In addition, since h”

0. Since lim,, ¢ > 0, it

increases with [, we also have that, for all 5/ > 3, o(z) > 93_:5, @ whenever x > 2.

Next, we turn our attention to lim,_,o+ T()) Note that

d

(" (@) = —h¥(x) (1= Tz))

Therefore, if limg+ 7 > 1 or limg+ 7 < 1, then x — (—zh”(z)) is monotone in the neighborhood
of zero, and lim,_,o+ —xh”(x) exists. If instead limg+ 7 = 1, then, by monotonicity, either
there exists € > 0 such that 7(x) = 1 for all z € (0,¢), or 7(x) > 1 for all z > 0. In both
cases, = — (—xh?(z)) is still monotone in the neighborhood of zero, and lim,_,q+ —zh™*(x)
therefore exists. Note that limg+ h? trivially exists, since h? is monotone.

We distinguish two cases. Suppose first that lim,_,o+ —zh”(z) is finite, and denote this
limit by [. If limy+ A® = oo, then

—hP
() — lim7 > 0.
hB(x) a—ot of

) —x

—h (a:

Therefore, there exists £ > 0 such that 7(z) > x for all z € (0,z]. In addition, the
inequality also holds if we replace 8 by 5’ > 5. If, 1nstead limg+ h¥ < oo, then

- —h'(z) s l
x)—z 5 — lm7—- - =
hP(x) w—o0t 0+ limgs W8 + 3 — 3
>0

which is strictly positive for  high enough For such a high enough [, we again obtain the
existence of an Z such that (z) > x5 ) for all z € (0, z|.

Next, assume instead that hmm_,m —zh'g () = 0o. Let M > 0. There exists ¢ > 0 such
that h#'(x) < —M/x whenever < e. Integrating this inequality between z and e, we see
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that .
ho(z) > hP(e) + Mlog — — oo.

T x—0t

Therefore, limg+ b’ = oo, and we can apply I'Hospital’s rule:

_hB ey N1/ N/
T C B e C0 Bt U ORI
e—0t  hP(z) 20+ ho (x) 0+
Therefore,
- —h? ()
x) -z W) A 1>0.

Again, this gives us the existence of an Z such that 7(z) > x?ﬁféf

) for all z € (0, ).

To summarize, we have found a g > B and two strictly positive reals  and & such that

~ —_pB" N ~ ~ N
for all ' > 3, i(x) > x W@ whenever > 7 or o < 7. If & > Z, then we are done: there

h#' (z)
exists 5 > [ such that 7(x) > 377:;(/3)

every 3 > (B and x € [Z, 1],

for all x > 0. Assume instead that T < . Then, for

_hﬁl/ —hﬁ/, /
T é? < NG (é?, since A”" is non-increasing,
—hP(z) , P )
:xhﬂ(£)+ﬁ’—6’ since h” — h” = (" — [3,
1
< —th”(t .
< px(0) G s

TV
finite, by continuity and compactness

—h*"(x)

Therefore, there exists 5’ > 8 such that () > 27 =

for all x € [7,2]. It follows that

z) > a:f}zf,(,g) for all > 0.

This implies that set

B= {B > B . WP is log—convex}

is non-empty. In addition, we also know that if 3’ > § and § € B, then /' € B. Put
f = inf B. Assume for a contradiction that 3 ¢ B. Then, there exists # > 0 such that

- —h? ()
Then, by continuity of A% in 3, there exists 3’ > B such that

ox) < xﬂ

h? (z)
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But then, 5/ € B and 1 is not log-convex, a contradiction. Therefore, the set of 4’s such
that h” is positive, decreasing and log-convex is |3, 00). ]

VI Quantity Competition

V1.1 The Demand System

We work with the following family of inverse demand systems:
hi(x)
Zje/\/ hj(z;)’

where z; is the output of good j. We assume that h; > 0 and h; > 0, i.e., products are

Px) =

substitutes. We also assume that A < 0, which ensures that, under monopolistic competi-
tion, the inverse demand for product ¢ is strictly decreasing everywhere. This also implies
OP;/0z; < 0.

The direct utility function associated with this demand system is U(x) = log D, hj(7;).
We claim that U is strictly concave. To see this, assume without loss of generality that
N ={1,..., N}, and note that the Jacobian of inverse demand system P is given by:

W{H —(h)®  —hihh, ... —Hih,
S —hLR,  RUH —(RY)* ... —hyh.
R 1 3 ; ’
—h. R, —h'h, ... h'H—(h)?

where H = ).\ hj(z;). Define v, = (Z/u)

1 1—% 1 B (H)

(< 0). By Lemma II, J is negative definite if and
only if matrix

P(X) = (=1)" <f[ (%—FX) —iH (HJFX)) .

i=1 J=1 j#i
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For every X <0,

n

P(X):(—l)”H(%JrX) 1_Zﬁix > 0.
——

=1 ., 7=1
Vv
>0 <0
g
~
>0

Therefore, P does not have non-positive roots, and U is strictly concave.

V1.2 Assumptions and Technical Preliminaries

We make two assumptions on the limits of ;. First, we assume that limgh, = oo. This
means that, under monopolistic competition, a firm can always make strictly positive profits
by supplying a strictly positive quantity. Second, we assume that lim. h, = 0. In other
words, the monopolistic competition price of good i goes to 0 as z; tends to infinity.
Moreover, we assume that monopolistic competition inverse demand functions sa/1,;isfy
W

Marshall’s second law of demand: |¢;| is non-decreasing for every ¢, where ¢;(z;) = x;
Since h; > 0 and h} < 0, this means that ¢, < 0.

Next, we use these assumptions to establish a few basic facts about functions h; and ¢;.
Note first that lim,, o x;h;(x;) = 0. To see this, note that, by the fundamental theorem of
calculus,

hi(z:) — ha(0) = / Bt > k() > 0,
0

where the first inequality follows from the fact that A7 < 0. By the sandwich theorem, it
follows that lim,, .o z;h}(x;) = 0.

Next, let j1; = 1 + limg ¢;. Since ¢; < 0 and ¢; is monotone, fi; exists, and f; < 1. Assume
for a contradiction that fi; < 0. Then, since ¢; is non-increasing, it follows that ¢;(x;) < —1
for every x;. Therefore,

d / " /
T (zihi(z:)) = z:hi (z:) + hi(2;) < 0.
Since lim,, o z;hi(x;) = 0, it follows that x;h;(x;) < 0 for every z;. Therefore, h, < 0, a
contradiction. We conclude that f; € (0, 1] for every 1.

VI.3 The Quantity-Setting Game and the Firm’s Profit-Maximization
Problem

A quantity-setting game is a triple ((h;)jenr, F, (¢j)jen), where (h;)jen is an inverse demand
system, F is a partition of the set of products, and (c;),en is a vector of marginal costs. The
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profit of firm f € F can be written as follows:

Fix a firm f € F, and let (2;)jens such that 32,y ¢ hj(z;) > 0. Then, we claim that
maximization problem

max I ((25)5e5, () jen XV
(Ij)jefe[o,oo)f (( ])JEf ( J)]G \f) ( )

has a solution. To see this, note that the assumptions made and the preliminary results
derived in Section V1.2 imply that II/ (-, (x;) enn ) is continuous on [0, c0)f. Moreover, since
products are substitutes and limy h}(z;) = 0 for every i, there exists M > 0 such that for
every (z;)jes € [0,00)/, there exists (2);er € [0, M}/ such that

7 ((@))jers (@5)emns) < TV ((@)jer, (@)jenns)

Therefore, the sets of solutions of maximization problems (xv) and

max 1 ((z))jer, (7)) jen xvi
(zj)jercl0,M])f (( i)ier (T5)je \f) (xvi)

coincide. Since I/ (-, (;);ens) is continuous and [0, M]/ is compact, maximization prob-
lem (xvi) has a solution.

VI.4 The Additive Constant (-Markup Property

We start by deriving first-order conditions under the assumption that all products are active.
The derivative of firm f’s profit with respect to x (k € f) is given by:

ont _ M (_Terhy | M G —o
= - % +xkh;€+ 0 ;

8xk H
H
UM (et o Pe—o
H H k P, )’

Therefore, if the first-order conditions hold at output vector (xy)ref, then, for every k € f,

Pk_Ck—I—L _Zjeijh;'
P, F H

Since the right-hand side of the above condition does not depend on k, it follows that an
additive form of the constant (-markup property holds:

P, — P —
k Ck_l_Lk:l Cl

=ul  Vk I .
Pk; IDI +Ll w, ) Ef
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Under monopolistic competition, we would have p/ = P’“P—;Ck + tx = 0. Under oligopoly, the
firm internalizes its impact on the aggregator, and sets p/ > 0.

VI.5 Definition and Properties of Output Functions

Fix H > 0, and consider the following function:

H Pk — Ck
Vk<l’k,H) =1- Ckm + Lk(xk) <: P -+ Lk(xk)> .

v, maps an output level and an aggregator level into a (-markup. Note that, contrary to the
price-competition case, v, depends on H.

vy, is differentiable, Ovy /Ox) < 0 (due to b} < 0 and to Marshall’s second law of demand),
and dvy,/OH < 0. By the inverse function theorem, inverse function x(u/, H) is well-defined
and differentiable, and satisfies 9x;/0uf < 0 and Ox/0H < 0. Output function y; maps
a (-markup and an aggregator level into an output level. It plays the same role as pricing
function ry in the paper.

For every x; > 0,

Vi, H) < sup vi (T, H) = fi.
#5>0

Therefore, if i/ > i, then -markup p/ is not consistent with product & being sold. We
therefore extend y; by continuity: xx(u/, H) = 0 whenever i/ > fi;,. Denote i/ = max;c; ji;.

VI.6 Definition and Properties of Markup Fitting-In Functions

Next, we use the output functions defined in the previous subsection to reduce firm f’s
first-order conditions to a uni-dimensional equation:?

w = SOl I (). (i)

Jjef

Since the right-hand side of condition (xvii) is strictly positive, we can safely restrict
attention to strictly positive ufs. Note that, for every k € f and puf € [0, fir,),

H

Therefore, by definition of ¢,

Xe(p! H)R (xi (! H)) + By (xe(p!, H)) > 0.

Combining the above inequality with the fact that dx,/0u/ < 0 for every k such that

3If the j-th term of the sum is such that ji; < u/, then x;(u/, H)h;-(xj(uf,H)) = limy, 0 2,k (z;) = 0.
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fir, > pf, it follows that the right-hand side of condition (xvii) is strictly decreasing in y/ on
interval (0, 7i/), and identically equal to zero on interval [jif, 00). Since the left-hand side is
strictly increasing in u/, there exists at most one p/ such that firm f’s simplified optimality
condition holds.

If W/ > i/ = maxyeys fig, then the right-hand side of equation (xvii) is equal to zero
while the left-hand side is strictly positive. If p/ is equal to zero, then the right-hand side
of equation (xvii) is strictly positive, and the left-hand side is equal to zero. Therefore,
equation (xvii) has a unique solution, which we denote by m/(H). m/ is firm f’s markup
fitting-in function.

Totally differentiating equation (xvii) yields:*

W' ==t g dr;

dH 1 d(x; 1 (x,))
H H “ 5
Jjef

X X
2au + 2LdH ) | .
Therefore,

w1 st ;)
T+ﬁ2jef< T |

)
1 d(z;h);(z;)) Ox;
1 H Zjef < dz; - onl

which is strictly negative, since dx;/duf < 0 and dx;/0H < 0 for every j.
By monotonicity, limgm/ and lim,, m/ exist. We will compute these limits in the next

m!'(H) =

subsection.

VI.7 Definition and Properties of Output Fitting-In Functions

For every k € f, let Xj,(H) = xx (m/(H), H). Function H — (Xy(H))key is firm f’s output
fitting-in function.

We first argue that lim,, X exists and is equal to zero for every k. Assume for a contra-
diction that this is not the case. There exists k € f, (H"),>0 and € > 0 such that H" — oo

n—oo

and X,(H"™) > ¢ for every n. By definition of m/, we also have that

n

"HY =1- o X (H"
mI(H") =1 = e gy ),
Hn
<1— ¢y, since Xz(H") > ¢, hy <0, and ¢, <0,
hi(€)
— —00

Therefore, m’ (H™) is strictly negative for n high enough, a contradiction. Therefore, lim,, X}, =
0.

4To ease notation, we ignore the fact that the sum should only span those j’s that satisfy x; > 0.
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Next, we argue that lim,, m’ = 0. Condition (xvii) can be rewritten as follows:

! (H) = = 7 X (R, (X (H)).

Jef

Since, for every f, lim,, X; = 0 and lim,; .o z;/}(7;) = 0, it follows that lim, m! = 0.
Next, assume for a contradiction that X} does not go to zero as H goes to 0 for some k in
f. There exists ¢ > 0 and (H"),,>¢ such that H” — 0 and X;(H"™) > ¢ for every n. Recall
- n—oo

that function xy — xh) (zg) is strictly increasing on the relevant domain (see Section VI.6).
It follows that, for every n,

! (") = S X (I (5 (H)).
Jef
1 mn / n
2 g (0

> Trehi(e),
— OCQ.
n—o0
Since m/ is always below unity, this is a contradiction. Therefore, limg X} = 0.
It follows immediately that limgm/ = i/. As competition intensifies (H goes up), firm
f decreases its t-markup from j/ (the monopoly case) to 0 (the monopolistic competition
limit), and the set of products offered by firm f expands.
By contrast, output fitting-in function X} is non-monotonic in H: X;(0) = Xy(c0) = 0,
and X (H) > 0 for H high enough (if jix < i/, then X, = 0 for H sufficiently low).

VI.8 Definition and Properties of the Aggregate Fitting-In Func-
tion
The aggregate fitting-in function is defined as follows:

D(H) =YY hi(X;(H)).

fer jef
Since I'(0) = I'(00) = > ;carhy(0) and I'(H) > 37,y h;(0) for every H > 0, I' is non-
monotone.
In the following, we first establish the existence of an H* > 0 such that I'(H*) = H*.

If limg hy > 0 for some k € N, then this is trivial: Since I' is continuous, I'(0) > 0, and
['(00) < o0, existence of a fixed point follows from the intermediate value theorem.
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Next, assume that h;(0) = 0 for every j. Note first that, by L'Hospital’s rule, for every j,

TR M) 11
el 2l (x) w0 B (x) + ahl(z) oo L+ o5(x) ik

To simplify the exposition, assume that ji/ = i, for every f and k € f. The case where
this assumption is violated can be dealt with as we do in the proof of Lemma I (essentially, by
taking an H small enough such that all firms are only supplying their high i, products). Take

some £ > 0 such that |F|(1—&) > 1. There exists H > 0 such that % > (1 —5)%

for every H < H, f € F and j € f. Moreover, for every H < H,

H hi(X;(H
LT _ 5~ 5~ W)

JeF jef

X;(HR(XG(H)) (X (H
gy j (X,(1))

fer jef
11
(-9 Y L LS o)
fGJ" Jef
1
=(1—¢) Z _—fmf(H), by condition (xvii),
fer
H—>0 (1—¢) Zl since hmm =i/,
fer
= [FI(1 —¢),
> 1.

It follows that I'(H) > H in the neighborhood of zero. The fact that lim,, I' = 0 and the
continuity of I' give us the existence of a fixed point.

VI.9 Equilibrium Uniqueness and Sufficiency of First-Order Con-
ditions

In the previous subsection, we established the existence of an aggregator level H* such that
I'(H*) = H*. Since we have not shown that first-order conditions are sufficient for global
optimality, we cannot conclude that H* is an equilibrium aggregator level.

Suppose that the following condition holds:

> (HX)(H)W, (X;(H)) — h; (X;(H))) <0, VfeF, VH>0. (xviii)

Jef

Fix a firm f € F and a profile of outputs for firm f’s rivals (z;);ean s such that HY =
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> jeans hi(zj) > 0. Define

Of (H, HY) = % (HO £y hj(Xj(H))) |

Jjef

The first-order conditions associated with firm f’s profit-maximization problem hold at out-
put vector (z;);es if and only if there exists H > 0 such that z; = X;(H) for every j € f,
and Q/(H,H®) = 1. Since Q/(0, H°) = oo, 2/ (00, H°) = 0, and Q/(-, H°) is continuous,
there exists H > 0 such that Q/(H, H°) = 1. Moreover, for every H > 0,

i
?9% - % (ZXQ(H)h;(Xj(H))H— (H0+Zhj(Xj(H)))> :

jef Jjef
1 / /
< 573 > (HXG(H)(G(H)) = hy(X,(H))) .
< 0, by condition (xviii).

Therefore, Qf(-, H°) is strictly decreasing, and there exists a unique H > 0 such that
Q/(H,H®) = 1. This means that there exists a unique output profile (#;);c; for firm f
such that firm f’s first-order conditions hold. In Section VI.3, we have shown that firm
f’s profit maximization problem has a solution (Z;);cs. By necessity, first-order conditions
must hold at output profile (Z;);es. By uniqueness, (Z;);ef = (£;)jef. Therefore, first-order
conditions are necessary and sufficient for optimality.

This implies that H is an equilibrium aggregator level if and only if H is a fixed point of
the aggregate fitting-in function. Since we have established existence of such a fixed point,
it follows that the quantity-setting game has a Nash equilibrium.

In fact, under condition (xviii), we can even prove that the quantity-setting game has a
unique equilibrium. To see this, define Q(H) =T'(H)/H. Then,

1
20 - g (ST o) - S o).
fEF jef feF jef
which is strictly negative by condition (xviii). Therefore, the aggregate fitting-in function

has a unique fixed point, and the quantity-setting game has a unique equilibrium.

VI.10 The CES Case

In the following, we show that condition (xviii) holds in the CES case. For every j € N, let
hj(z;) = a;z§, where a; > 0 is a quality parameter, and a € (0,1). Clearly, h; is strictly
increasing and strictly concave, limg h;- = 00, and lim, h;- = 0. Moreover, ¢; = o — 1.
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Note that, for every firm f,

! (H) = = 57 XG(H)I (O (H) = 2 37 by (X ().
Jjer jef
Therefore, o
! (H) = 5 S™ (HXYHR G () — hy(X(H)).
jef

Since m/’ < 0, it follows that D ier (HX[(H)R)(X;(H)) — hi(X;(H))) < 0, ie., condi-
tion (xviii) holds. Therefore, multiproduct-firm quantity-setting games with CES demands
have a unique equilibrium.

VII Equilibrium Uniqueness

In this section, we fix a pricing game ((h;)jen, F, (¢j);jen) satisfying Assumption 1. Define
p, = p(hy) (see Lemma III-(b)) for every k. As in Section II1.2, we make explicit the depen-
dence on ¢ of functions v, and ry, by writing vg(py, cx) and ry,(uf, c).% It is straightforward
to show that 1}, is decreasing in ¢, and that r; is increasing in c.

VII.1 Preliminaries

In this section, we prove several technical lemmas, which will allow us to derive firm-level
conditions for equilibrium uniqueness.

We first show that the assumption that p; is non-decreasing on (g_?j, 00) is equivalent to
the convexity of the reciprocal of demand for product j. Let D; : (p;, H°) € (]_Dj, o0) xRy +—

—h;(p;)/ (h;(p;) + H°).

Lemma VII. The following assertions are equivalent:
(i) pj € (Qj,oo) — 1/D;(p;, H°) is convex for every H°.
(ii) p; is non-decreasing on (]_)j, 00).

Proof. Note that, for every p; > p. and H 0> 0,

0? 1 hy + H\"
@DJ(PJ';HO)__( R > ’
_ ((h;-f — 1Y (h +H°>>’
()’ ’

HO'
= (pﬁ—) :
V;
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_ i
=P — 2
75

which, by Lemma III-(d), is non-negative for every p; > P, and HY if and only if P;(pj) >0
for all p; > P, O

Next, we introduce the following notation. For every f € F, for every u/ € (1, /),

fo -1
wh = ——,
o
F-1
o/ = lim ,
Wt pd
and for every k € N, for every x > p

() —1
Xe(z) = ———.

The following lemma is useful to understand our uniqueness conditions:
Lemma VIII. For every f € F, w! € (0,&7) and k € f:

e For every x such that xi(z) > w/, 1 —w/0( 0.

x) >
e In particular, for every ¢, > 0, for every x € [rk (ﬁ, ck> ,oo), 1 —w/O,(z) > 0.
1.

e In particular, for every x > p,, xi(x)0k(z) <

Proof. Let f € F, k € f, w € (0,w7), and x such that x,(z) > w/. Put u/ = —=—. Then,
te(z) > p!. Therefore, there exists ¢ > 0 such that vi(x,c) = /. We know from Lemma D

that

%(uf ¢) = W (re(p, cx))
opl 77 (= (e ) = (0 = 1) (=hy (e )
_ w(w) 1
= (@)p! 1= Wb (x)

> 0.

In addition, by Lemma II1-(d), v (z) < 0. Therefore, 1 — w/6;(x) > 0. This establishes the
first bullet point in the statement of the lemma.

Next, let ¢ > 0 and = > ri(u/, c). Then, since v(., c) is increasing, vy (z,c) > p/. Since
c > 0, it follows that () > p/, and that xi(z) > w/. It follows from the first part of the
lemma that 1 — w/6,(x) > 0.

Finally, let z > p . Put w! = xi(x). Then, for every y such that x.(y) > w/, 1—w/ O (y) >
0. By monotonicity of xj, this implies that, for every y > z, 1 — yx(2)0x(y) > 0. Therefore,
by continuity of 0y, xx(x)0(z) < 1. O
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We will need to differentiate fitting-in functions:®

Lemma IX. For every f € F and H > 0 such that m/(H) ¢ {f} s m’ is C! in a
neighborhood of H, and

, m! (H)(m? (H) ~ 1) i
m!'(H) = e . ) () )
1 (01 o (07) = 1) g )

Proof. Recall that m/(H) is the unique solution of equation

V(! H) = p! <1 — 2jes %‘H(_Tj(ﬂf))> = 1.

Let H° > 0 such that m/(H®) # i for all k € f, and choose ¢ > 0 such that
(m/ (H®) —e,m/(H°) +2) N {fix} e, = 0. We introduce the following notation:

f={kef: ml(H) <}

Note that if f were empty, then 1 (m/(H), H®) would be equal to m/(H®) > 1, a contra-
diction. Define

V1 (u H) € (mf (HY) — e,m! (H°) + &) x Ry 5 i (1 e (Tj(uf))) |

H

and note that ¢(uf, H) = ¢(u/, H) for all (uf, H) € (m/ (H®) —e,m/(H°) +¢) x Ry4. In
addition, ¢ (m/(H"), H®) =1, Y is C,

_aA cf cf Y

a:ﬁ" (m (H°), H") =1 - % +md (H) (_%) |
= 1 frroy Zkefrfc(—%'g)
~ mf(HY) (i (H) = 1) Zkef%c

which is strictly positive, and

o

e Dokef e mf(H®) —1
oOH ’

(mf(HO),HO):mf(HO) (HO)Q = O

By the implicit function theorem, there exist > 0 and a C' function

m!  (H* —n,H* +n) — (m! (H°) —e,m/ (H°) + ¢)

6Tn the statement and proof of this lemma, we drop argument c¢; from function rj to ease notation.
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such that ¢ (/ (H), H) = 1 for all H € (H® —n, H® +n). In addition,

) L) ) 1)
HO f( 170 70y _ Zkef”r;e(_%) 7
1 md (HO) (mf (HO) — 1) 2

which is indeed strictly negative. Since functions ¢ and ¢ coincide on (mf (H®) — e,m/ (H®) + £) x
R, ., and by uniqueness of m/, it follows that m/ and 7/ coincide on (H°—n, H°+n). There-
fore, m’ is C* in an open neighborhood of H?, and m/'(H®) = m/'(H"). O

Lemma X. Assume that if = ji; for every f € F and j € f. If, for every f € F,

o 1 w!
V! o Z& _ 1
W€ (0,87, ( 1—wig, " Doker e ke Wk = ()

kef

where, for every k, functions Oy, vr and hy are all evaluated at point pr = 1, (ﬁ, ck> , then

pricing game ((hj)jen, F, (¢;)jen) has a unique equilibrium.

Proof. By Theorem 1, ((h;);en, F, (¢;)jen) has a pricing equilibrium. To prove that there is
only one equilibrium, we show that Q(H) = I'(H)/H is strictly decreasing. Let H > 0, and,
for every f € F, u/ = m/(H) and w/ = % Then,

H2QY(H) = H Ym0t (1) b (i (7)) = D0 o (i ()

feF kef fEF keN

f(,f _
Z ] (u 1) / /
) g —h — E h by 1 IX.
M ( "l k)> R crma

reF \ 1+ pf(p/ —1) S kef kef

Therefore, a sufficient condition for this derivative to be strictly negative is that, for all
feF,

Seermi(—H
(e — B
S Ef,( A < 1. (xxi)
_ kef "R\ "V

Let f € F. Then,

(sexi) <= (/1)

Zkef ufrfc (—hi) B Zkef Mfr;c (_VJIC)> <1

Zkef h, Zkef Tk
¥ ’Yk(_h;c> f ’Yk(_'Y;C)
; Lver W o) o () ket )G 0 ()
— (' —1) - <1,
Zkef hu Zkef Yk
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O 1
! Lones Tk _ 2ok Tt
=y B <1,
Lnes x D kes Yk
z wle
— (uf -1 Zkefﬁ%_ _Zkefﬁ%
g ) L <1,
Zkef hy Zkef Vi
O 1 of
= =Dt Vi <1,
; 1—wlfo, Skerbe D orer %

wfo, 1 wf
— Sl - <1,
(; L= Q’ﬂk) <Zkef T Lones 7’@)

where, for every k € f, functions 6, y and hy are evaluated at point pp, = 7(p/) =
Tk (ﬁ, ck>. Since condition (xx) holds by assumption, € is strictly decreasing. Therefore,

the pricing game has a unique equilibrium. O

Lemma XI. Assume that i/ = fi; for every f € F and j € f. Let (¢;)pen € RY, . If, for
every [ € F,

B 1
vw! € (0,a7), V(Tr)pes € H {Tk (m’QO 700> ;

kef

(xxii)
wak(xk) T 1 . wf
<Z 1— wfgk(x_k>7k( k)) (Zkef (1) Zkef fyk(xk)> <1,

kef

or, equivalently, if

B 1
vw! € (0,7), V(Th)pes € H |:7"k (mék) ;OO) )

vel (xxiii)

oz
;%(%)W(%‘) (Wf@i(xi)ll—Tging)) B pz(xl)) <0

then pricing game ((h;)jen, F, (¢;)jen) has a unique equilibrium for every (cj)jeN € [Lienle), o0).

Proof. Assume that condition (xxii) holds, and let (c),cp € [lieplcr, 00). We want to
show that condition (xx) holds, so let f € F, w/ € (0,0f) and pf = . Let k € f and
pe = ri(pf, cr). Since ¢, > ¢, and 1y is increasing in its second argument, it follows that
pe > me(pf,c). Therefore, (Pr)res € Tres [ (1/, ¢;,) ,00). Tt follows that condition (xx)
holds. By Lemma X, pricing game (N () kens » F s (Ck) e /\/) has a unique equilibrium.
Finally, we show that conditions (xxii) and (xxiii) are equivalent. Let f € F, w/ € (0,0/),

36



- (Eesellg) (3)(5)

ief jef ief jef
wa
= |y — T D ov(t=wlp) )| = Dop) (D] <0,
icf ]Gf icf JEf
1 —wlp;
= > W ( SR —m) <0. O
i,jES

Lemma XII. Assume that if = ji; for every f € F and j € f. If, for every f € F,

Vol € (0,07), ¥ (wh)yes € { (@i ERL,: VR E £ xalm) > @},

wfek(xk) 1 . wf (XXlV)
(;f 1 — wf@k(a:k_) ’Yk(flfk)) (Zkef he () Zkef %(m)) <1,

or, equivalently, if

Vol € (0,67), V(wi)yes € { (@h)yey €RLL: VEE [, xa(an) > ! |

1—w!p;(z;) (xxv)
(e N~ (7 fo(p N2 FINTIT (e
5 stey(on) (w0w) T2 — ) <o
injef

then pricing game ((h;)jen, F, (¢j)jen) has a unique equilibrium for every (Cj>j€N' € ]Rﬁ\rcr
Proof. Let (ci)pen € Rﬁ:ﬁr, and assume that condition (xxiv) holds. Let f € F, w/ € (0,&)
and pf = 1/(1 = w?). Let (21) s € [Tpes [raln’, i), 00). Then, for every k € f,

Lk(l’k) > Vk(l’k,ck) = ,uf.

Therefore,
(5Ck)kef € {('Tk>kef € R++ Vk € f, xx(zr) > Wf}

and, by condition (xxiv), condition (xxii) holds for (c;),cn = (¢&)yep- By Lemma XI, pricing
game (/\/ () ken » F s (Ch) e N) has a unique equilibrium. In addition, as shown in the proof
of Lemma XI, conditions (xxiv) and (xxv) are equivalent. O

All we need to do to prove Theorem 2 is show that, for every f € F, each of conditions
(a) and (b) in Theorem 2 implies condition (xxiv) (or, equivalently, condition (xxv)), and
that condition (c¢) implies condition (xx).

37



VIIL.2 Sufficiency of condition (a)

We prove the following lemma:

Lemma XIII. Assume that @i/ = fi; for every f € F and j € f. Let f € F. If
minjeyinf, ~, pj(p;) > maxjersup, -, 0;(p;), then condition (xxiv) holds for firm f.

Proof. We show that condition (xxv) holds for firm f. Let f € F, w/ € (0,&7), and
(@k)pey € {(xk)kef eRL, : Vk e f, xu(ni) > wf}
Since for every k € f, xx(zr) > w/, it follows that ¢4 (x;) > 1. Therefore, z; > P, for every

k, and
max O (zy,) < Ilgun pr(xr).

kef
Therefore,
—w/ p] !
> | w —pi) <Y (@Wpi—p) = @ = 1) Y e <0,
i,jEf i,jEf i,jef

where the first inequality follows by Lemma VIII and maxye 05 () < minges pi(xy). There-
fore, condition (xxv) holds for firm f. ]

VIL.3 Sufficiency of condition (b)

The aim of this section is to prove the following lemma:

Lemma XIV. Assume that i/ = ji; for every f € F and j € f. Let f € F. Suppose that,
pf < pr(~ 2.78), and for every j € f, limw h; = 0 and p; is non-decreasing on (]_)j,oo).
Then, condition (xxiv) holds for firm f.

This lemma is proven in several steps. Start with the following technical lemmas:

Lemma XV. Assume that i/ = [i; for every f € F and j € f. Let f € F. Suppose that
il < oo, and for every j € f, limy, h; = 0 and p; is non-decreasing on (]_9],, o0). Then, for
every w! € (0,&7), for every k € f, for every x > 0 such that xx(x) > w/,

1—-o 1
wof 1—

1
7 < pr(x) < oF
Proof. Let k € f and w/ € (0,07). By Lemma III-(f), lim, pr = ﬁ?—il
is non-decreasing. Therefore, pp(z) < Q—lf for all =z > Py In particular, this inequality is also
satisfied if x is such that y.(z) > w?.

= % In addition, pg
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hi(x)
—zh} (z)"

In addition, pg(z) = wx(2) Therefore,

topi - (31, 250
B Eg = (‘ p(()) ~1+ W)) ,
:Z§z§+1$22)@awh%@)—1%
<

where the last inequality follows from the fact that yi(x) < @/ and pp(z) < w—lf Therefore,
for all z > Py

) [ s [ v () o (287)

Therefore,
- 1
YV >
oule) 2 wl 1= xk(z)’ "ok
In particular, if x4 (x) > w/, then
-l 1
]
pr() 2 wl 1—w/f

Lemma XVI. For every @ € (0, 1], for every w € (0,&), define

1l-o 1 17°
buws (Y, 2) € {T—, —} = Wy + wz —y — 2.

l—w w

There exists a threshold w* € (0,1) (w* =~ 0.64) such that if @ < w*, then ¢, < 0 for all
w e (0,w).

Proof. Let w € (0,1) and w € (0,w). Define

M (w,w) = max ey, 2).

(w2)e['5% 503]
Notice that ¢, 5(y, 2) = ¢ue(z,y) for every y and z. It follows that

M (w,w) = max , Guwi(Y, 2).
(w2152 5.2
y<z
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Let =21 <y <2< 1 Then,
w

v w(l—wz) w?z

= — —1
dy (1—wy)? 1-wz

1 1—wz)’ 9
= w —wz—(1-wz) |,
1 —wz 1 —wy
1

—1—-wz
=w—1<0.

(w—w’2— (1 —wz)), since y < z,

It follows that, for every (y,z) € [1=2-L1, %]2 such that y < z,

1—-w 1
< = Yye(2).
) < 0 (S ) = s
Therefore,
M (w,w) = max wo(2).
S L
Since

1— 2w?
@bg,w(z) = <1_ u w) d > 0,

l—w

function v, 4(.) is strictly convex. Therefore,

-0 1 1-w 1 1—-w 1 1
M ) = w,w ) — ) Yw,w — ) — .
(w,®) max{ng ( v 1l-w @ 1—w) P < w l-w w)}

Since @ z(2,2) = 2(w — 1)z < 0 for every z, it follows that M (w,w) < 0 if and only if
((w,w) <0, where

T —w l-w @ w 1l-w @’
w(l —w) w l—-w 1 1
J— — + — __7
w (1 —w)w w l—-w
1 w—2
= —|— — W
l-w w

For every w € (0,w),
¢ 1
S 4 1>,
ow (1 —w)? +(IJ

Therefore, ( is strictly increasing in w on interval (0,@). It follows that M (w,w) < 0 for
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every w € (0,w) if and only if ¢ (w) < 0, where

§(@) =¢(w,),
1 2
1—w w
For every @ € (0,1),
1 2
"(w) = + —1>0.
Therefore, ¢ is strictly increasing on (0,1). Since limg+ £ = —oo and lim;- £ = +o0, there
exists a unique threshold w* € (0,1) such that {(w) < 0 if and only if @ < w*. Numerically,
we find that w* ~ 0.64. O

We can now prove Lemma XIV:

Proof. Assume that &/ < w* (or, equivalently, that i/ < p* ~ 2.78). Splitting the sum in
two terms, condition (xxv) can be rewritten as follows:

Vw! € (07@f>7 V(:Ek)kef € {(xk)kef € Ri-i- D Vk € f, xi(zr) > Wf} ;

— (s — i
% 2Vi($i)7j($j) (wfei(l‘z‘)ll_Tm + wf@j(%)fll_wf—g;gx;; — pi(zi) — pj(%‘))
— ol

(xxvi)

Let us first show that the second sum in equation (xxvi) is strictly negative. Let w/ € (0,07),
i € f and x; such that y;(x;) > w/. Then,

1 — w/pi(:)

10 () —, 7=

— pi(xi) < wfez‘(ﬂl?z‘) — pi(z;) <0,
where the first inequality follows from the fact that p; is non-decreasing (0;(z;) < pi(z;)) and
Lemma VIII (1 — w/6;(z;) > 0).

Next, we turn our attention to the first sum in equation (xxvi). Let w/ € (0,&7) and
(1) ey such that xp(zy) > w! for every k € f. By Lemma XV,

1-of 1 1

Vke S p(@) € | — 17 oF |-
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In addition, as shown above, for every k € f, 0(zx) < pr(xk) (< w—lf) Therefore,

%zzf ) (chei(mi)ll—TZJiExj)) i wf@j(fﬂi—ngExj)) — i) = pj(xj))

< ! > i@ (@) bur o (pi(wi), pi(a;)
ijef
i#]

<0, by Lemma XVI. ]

VIL.4 Sufficiency of condition (c)

We prove a slightly more general result:

Lemma XVII. Assume that i/ = ji; for every f € F and j € f. Let f € F. Assume that
there exist h' € R]Ef, ¢ >0 and (O‘k)kef € RLF such that for every k in f, ¢ = ¢/, and
for every x > 0, hy(z) = aph’! (x). Assume in addition that p/ is non-decreasing. Then,
condition (xx) holds.

Proof. Let k € f. It is straightforward to show that 0, = 0/, pp. = p/, v = !, e = o/,
and x; = x’/. In addition, v, = v/. Therefore, r, = r/. Condition (xx) is equivalent to

for 1 w’
vw! € (0,0 T - :
@ €090, <Z 1 —wafOéW) (Zkef agh? 3 ey awf> o

kef

where all functions are evaluated at rf (ﬁ, cf ) This is equivalent to

1—wlpl w6’

<1,
which clearly holds, since 6/ < p7. O]

VIIL.5 Condition (b) when limh; >0

In this section, we extend condition (b) in Theorem 2 to cases where lim, h; is not necessarily
equal to zero. We start with the following technical lemma:

Lemma XVIII. Assume that ji’ = ji; for every f € F and j € f. Let f € F. Assume that
p; is non-decreasing on (Bj’ oo) for every j € f. Then, for every k € f,

S, = {w €(0,67): Jw>p, w=xx(r) = pzjﬂf)}

42



contains at most one element. If Sy is empty, then, either xx(x)pr(z) > 1 for every x > P,
or xx(z)pr(x) < 1 for every x > p,- If. instead, Sy, = {w}, then, for every x > %

. 0k<x) < %; and

o if pp(x) < 3. then pr(z) > 152 -

Proof. Let k € f, and assume for a contradiction that Sy contains two distinct elements.
There exist x,y > p, such that xx(2)pe(x) = 1, xx(y)pr(y) = 1 and xx(z) # xx(y). To fix
ideas, assume xx(y) > xx(z). Then, since yj is non-decreasing, y > x. Since pj is non-
decreasing, pi(z) < pi(y). Therefore, xi(z)pr(x) < xx(y)pr(y) = 1, which is a contradiction.

Let k:x € (p,,00) — pr(2)xk(x), and notice that  is continuous and non-decreasing. If
Sy, = 0, then, there is no x such that x(x) = 1. Since & is continuous, either x > 1, or x < 1.

Next, let z > p, . If py(x) < <, then, 6 (z) < pp(z) < 1. Assume instead that py(z) > 1.
Let Z such that xx(2) =@ = ﬁ(i). Then, px(z) > pr(Z) = £ and, by monotonicity, z > &.
Therefore, xi(z) > xx(2) = ©. Next, we claim that ,(z) < -3

. To see this, notice that

) — xx(z)
() = :B_WZ’ES) Therefore,
(@) 1 () ()
wle) xR wla)
LN k) )
=3 (1w )
L n)
=3 (1w 555)
Therefore,
Ou(z) = e () e () _ 1

Therefore, 0y (x) < Xkl(x) < 2

Next, assume that pp(x) <
t e [z,

. We know from the proof of Lemma XV that for every

1
%

pe(t) ()
pe(t)  w(t)  tpi(t)
< ()

Pr() ~ (@)

o S o Therefore,

Integrating this inequality between z and z, we obtain that

o) 2 o208 = L )
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Proposition II1. Assume that i/ = fi; for every f € F and j € f. Let f € F. Assume that
p; 18 non-decreasing on (}_oj, oo) for every j € f and that @/ < w*. Assume also, using the

notation introduced in Lemma X VIII that, for everyi € f, S; = {&} . Then, condition (xxv)
holds for firm f.

Proof. As in the proof of Theorem XIV, the expression in condition (xxv) can be split in two
terms (see equation (xxvi)). Since p; is non-decreasing for every j € f and by Lemma VIII,
the second sum is strictly negative. Next, we turn our attention to the first sum. Let
w/ € (0,&7), 4,7 € f, and x;, x; such that x;(x;) > w/ and y;(7;) > w/. We want to show
that

1 — w/p(as)
1 —wfﬁj(:vj)

1 —w/pj(a;)

N PINg) 59.(+.
1= ol6;(z) + w!0;(x5)

— pi(zi) — pi(x;) < 0. (xxvii)

To fix ideas, assume that p;(z;) < p;(z;). If pi(z;) > Z7, then condition (xxvii) is clearly

satisfied, since, by Lemma VIII, 1 — w/6;(z;) and 1 — w’6;(x;) are strictly positive. Assume

instead that p;(z;) < 7. Then, we claim that w/ < &. Assume for a contradiction that

1
pi(ds)
pi(x;) < p;(Z;) and, by monotonicity, z; < Z;. Since x; is non-decreasing, it follows that

O < wl. Since S; = {@}, there exists #; > p, such that x;(;) = & = Therefore,

w! < xi(:) < xild) = &,

which is a contradiction. Therefore, w/ < .
We distinguish three cases. Assume first that p;(x;) < £. Then, by Lemma XVIII,

w

( )>1—d) 1 >1—(2) 1
x
PE\TE) = O T—xp(xy) = o 1—wl’

;) pi(x4)
G = Tl pim

v < ¢wf,c22 (pi(l'i),/)j(l'j» )

0;(z;) pj(z;5)

o s 0;
for k € {i,j}. In addition, 1_w,(- 1—wl0(z;) = T—wlp;(x;)

) and . Therefore,

which, by Lemma XVI, is non-positive, since & < @/ < w*.
Next, assume that p;(z;) < = < p;(z;). Then, by Lemma XVIII,
1—w 1 11— 1
>

() >
pilwi) 2 O 1—xi(z) = @ 1—wl’

and 0;(z;) < 1. Therefore,

w

w!0;(x;) wf wf )
< — [ @ 1—wip(x)) — p:i(x:) — =
=1 —wlb;(z;) ( o ) + (L= wipili) = pilas) — =,
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w! pi(z;) ! w! 1
< VR[] - w 1—wpi(z;)) = pilx;) — =
< L (1) - ) - o) - 3

1
= <Z5wf,w (/)1;(%)7 5) )

< 0 by Lemma XVI.

v < w!0;(x;) 1—°qu N w!0;(x;) 1_w_f _i_;
1 —wf;(x;) w 1 —wfb;(x;) w oW

w
ﬁ wf w! wf 1 1
< 7 +—4—F 11— ==
_% w 1_% w w oW
11
_¢wfw(T7A)7
w
< 0 by Lemma XVI. O]

Condition S; = {@} Vi in Proposition III may look a little bit arcane. The following
corollary is easier to understand:

Corollary 1. Assume that i/ = [i; for every f € F and j € f. Let f € F. Assume
that p; is non-decreasing on <£j, oo) for every j € f and that @/ < w*. Assume also that
there exist h € Rﬁf and (o, Br)ker € (R?H_)f such that for every k € f, for every x > 0,
hi(z) = agh(Brx). Then, condition (xxv) holds for firm f.

Proof. Let us first show that S; C S; for all 7,5 € f. Let 4,5 € f. If S; is empty, then,
trivially, S; € S;. Assume instead that S; # (), and let @ € ;. There exists z; > p, such that

1
pi(Zi)

Xi(Zi) = =

Since h;(x;) = a;h(Bix), it is straightforward to show that p;(Z;) = p(Bi2;) and x;(Z;) =
X(Biz;). Let &; = &xz Then,

, Big) =xilt) == — = = L
X; (&5) = (595] >_XZ( 2 pi(Ti)  p(Bidi)  pi(E;)

Therefore, w € S, and S; C §;. It follows that S; = 5, for all 4,7 € f.

If S; # 0, then, by Proposition ITI, condition (xxv) holds for firm f. Assume instead
that S; = () for all . Let ¢« € f. By Lemma XVIII, either x;(z;)p;(z;) < 1 for all x;, or
Xi(xi)pi(z;) > 1 for all z;. Assume first that x;(z;)pi(z;) < 1 for all z;. Let j € f and
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Tj > P Then,

X (@5)pi(5) = xi (ﬁ%) pi <%%> <L

]

Therefore, x;p; < 1 for every j in f. It follows that

Therefore, limy, h; = 0 for every j € f (if limo h; were strictly positive, then p;(z;) would
go to 0o as x; goes to 0o). By Lemma XIV, condition (xxv) holds for firm f.

Finally, assume that y;(x;)p;(x;) > 1 for all x;. Then, using the same argument as above,
X;p; > 1forevery j € f. Let ¢ € f, and assume for a contradiction that p, > 0. Since 1/x; is
non-increasing, and since, by continuity, Li(gi) = 1, it follows that limpj Xi = o0. Therefore,
lim + pi = 00, which is a contradiction, since p; is non-decreasing. Therefore, p, = 0.

Assume for a contradiction that limg+ ¢; = 1. Then, using the same reasoning as in the
previous paragraph, limg+ p; = 0o, which is again a contradiction, since p; is non-decreasing.
Therefore, limg+ ¢; > 1, and @ = limg+ x; is strictly positive. In addition, since

X;(®) = xi (%x) ,

limg+ x; = w for every j € f. Notice that, for every j € f, for every z > 0,

. ) 1
pi(x) = lé{ppj = 1(1)I+HX—] =
and that, by Lemma VIII,
1 1 1
g;(x) < <lim— = —.
xi(x) — oty w

It follows that

1 .
maxsup #; < — < mininf p;,
icf w ef

i.e., condition (i) in Theorem 2 holds. By Lemma XIII, condition (xxv) is therefore satisfied
for firm f. O]

Proposition IV. Assume that i/ = fi; for every f € F and j € f. Let f € F. Assume
that p; is non-decreasing on (1_9j,oo> for every j € f, that & < w*, and that ), < % for
every k in f. Then, condition (xxv) holds for firm f.

Proof. Let i,j € f, w/ € (0,&07) and x;,x; > 0 such that y;(z;) > w/ and y;(z;) > w/.
Define

_ w!0; ()

v (1 —w!pj())) + T—w/0,(z)) (1= wpilw:)) = pilw:) = pj(y).
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As in the previous proofs, all we need to do is show that ¥ < 0. Assume first that p;(x;) >
and p;(x;) > =5. Then,

max (0;(x;), 0;(x;)) < min (ps(x:), p;(x;)) -

Therefore, ¥ < 0.
Next, assume that p;(z;) < =7 and p;(x;) > 7. Then, we claim that

1—of 1

(X)) 2 —— .

(xxviii)
To see this, assume first that S; = {&;}, where &; € (0,&7). Since pi(z;) < & < =, by
Lemma XVIII,

1—a 1 1—of 1

pi(x;) >

Assume instead that S; = (). By Lemma XVIII, either x;p; < 1 or x;p; > 1. If x;p; > 1, then
we know from the proof of Corollary I that

1 1
pi = sup — > —.
Xi @l
This contradicts our assumption that p;(z;) < ;—f If, instead, x;p; < 1, then we know from
the proof of Corollary I that lim,, h; = 0. Therefore, by Lemma XV, inequality (xxviii)
holds.

Therefore,

w!0;(z;) w! wl ]
< A Sl 7 — w Y ) o N
Y= — w0, (z;) <1 ) + 5 (L= wlpi) = pulw) — =

w pi(;) ! wl 1
(ANl _ w — o) — o1 —
= T wlp(n) (1 >+ Eg (=) — ol = 5.

1
—buas (i), 5 ).
< 0 by Lemma XVI.
Finally, assume that p;(z;) < =5 and p;(z;) < =r. Then, as above,

>1—@f 1
S

for k € {i,j}. Therefore,
v S ¢wf,oizf (pz(%), pj(‘rj)) )

which is non-positive by Lemma XVT. O
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Corollary II. Assume that if = ji; for every f € F and j € f. Let f € F. Assume that p;
1$ non-decreasing on (&,oo) for every j € f, that @ < w*, and that 0} is non-decreasing
for every k in f. Then, condition (xxv) holds for firm f.

Proof. Let k € f. Since 6, is non-increasing, for every x > P,

1
Or(z )<Sup6k—hm6k<hm—:_—f,
® Xk W

where the second inequality follows from Lemma VIII. Therefore, by Proposition IV, condi-
tion (xxv) holds for firm f. O

VII.6 Proof of Proposition 8.

Proof. Let j € f. Then, for all x > 0,

(x) = ;B0 (B + 6;) <0,

(x) = BQh”(ﬁjaS +4;) >0,
(@) = a;y(B;x + 45),

() = a; B9 (B + 0;),

(z)

g
pi(x) = p(Bjx + 0;) + m > p(Bjr +95),
0,(x) = 0(Bz +3;),

5(0) = G+ )

Therefore, h; is positive, decreasing and log-convex, ¢; is non-decreasing whenever ¢; is > 1,
and fi; = lim ¢. In addition, for every z > P

1 <j(x) < u(Bjx+9;).

Therefore, B;x + d; > p, and
0;(x) < sup6(y).

y>p

It follows that SUPy>) 0i(y) < sup,.,0(y). Using the same reasoning, we also obtain that
inf,~, p;(y) > inf,~, p(y). Therefore,
p P

max sup 0. < maxsup 0(z
jef x>£ () jef x>§ (@)

< supf(z),

T>p

< inf p(z),

T>p
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< min inf
_rjneljgl;cggp(:v),

< min inf p;(z). OJ
= x>£j,0]( )

VI1I.7 Proof of Proposition 9

In this section, we let m/(H, (c;)jcf) be firm f’s fitting-in function when its costs are given
by (cj)je I It is straightforward to adapt the proof of Lemma H to show that m/ is non-
increasing in (¢;),;, and that

lim m/ (H,(cf,...,d)) =1

T (2, (... 7))

fo
We introduce the following notation: For every f € F, put Ef = minje s fi; and w/ = ﬁ#—fl

(or wf =1 if pf = 00). For every ¢ > 0, define

H(c)=mininf {H >0: m/(H(c,... .
H(c) rfrg;nn{ >0: m!(H(c...,c) <p'}

By Lemma H, H(c) is finite, and m/ (H, (c,...,c)) < p/ for all f € F whenever H > H(c).
In addition, since m/ is decreasing in (c;);cf, m’ (H, (cj)jef) <p! forall H> H(c), fe F

and (¢;),.; € [c, o0)/. Note also that H is non-increasing in ¢, and that lim, ., H(c) = 0.

We prove the following preliminary technical lemma:

Lemma XIX. Let ¢ > 0. If, for every f € F,

1
V! € (O,Q_Jf>, V(l‘k)kef S H |:7”k (m’g> 7OO> )

kef

(xxix)
wf9k<xk) T 1 _ w’
<; I- wf@k(xk)%( k)) (Zkef hi () Zkef ’Vk(xk)> <h

or, equivalently, if

1
vw! € (0,w)), V(T )pes € H {T‘k <1——wf’g) ;OO) )

kef
(xxx)
—whoi(rs
Z Yilws)v;(z5) (wwi(m)ll—ngiExZ)) B pz(%)) <0

i,jES

then, for every (c¢;)jen € [c, ooV, pricing game ((h))jen, F, (cj)jen) has at most one equi-
librium aggregator level in (H(c),o0).

Proof. The proof is exactly the same as the proof of Lemma XI. O]

We can now prove Proposition 9:
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Proof. We only prove the first bullet point. The proof of the second bullet point is similar,
and therefore omitted.

Let H® > 0, and H° > H". Recall that pricing game ((h;)jen, F, (¢;)jen) with outside
option H? is equivalent to pricing game ((h]H O)je N5 F, (¢)jen) with outside option 0, where

HO
0
M =hj+ ——

VieN.
N

0
Note that, for every H° > H® and j € N, pJHO > pjﬁ and lim,_, ., pfo = 00.
Fix some ¢ > maxjey p.. For every j € N and z > ¢,”

1 1 1
< < max

%0 < T S 00 S EE L

0,

where the first inequality follows by Lemma VIII. Since lim,, pjﬂo = oo for every j € N,

0 _
there exists ¢ > ¢ such that, for every j € N, ,ojﬂ (x) > 0 whenever x > ¢’. Therefore, for
every H* > H®, f € F,i,j € f, z; > and 2; > ¢, pfo(xi) > Hfo(xj), and, in particular,

wl/H° T; 0 0
vl € (0.6). Tl (L=l ) = i (w) <0

1 — W/ (,

Therefore, condition (xxx) holds for lower bound ¢ (or higher), and, for every H° > H"
and (¢;)jen € [¢,00)V, pricing game ((h]HO)je/\[,]:, (¢j)jen) has at most one equilibrium
aggregator level in (H (), 00).

Next, choose ¢ > 0 such that H(¢") < H". Since lim,, H = 0, such a ¢’ exists. Put
¢ =max (c,c"). Since H(-) is non-increasing, H(c) < H". Combining this with our previous
findings, we can conclude that for every H° > H" and (Cj>j€N € [, 00)V, pricing game
((hj)jen, F, (¢j)jen) with outside option H® has at most one equilibrium aggregator level
in (H° 00). Since this pricing game has an equilibrium (Theorem 1), and since no equilib-
rium aggregator level can be less than HY, it follows that this pricing game has a unique
equilibrium. O

VII.8 Establishing Equilibrium Uniqueness Using an Index Ap-
proach

The reader may wonder whether we could obtain weaker uniqueness conditions by using
more standard approaches. Uniqueness of a fixed point is usually established by using the
contraction mapping approach, the univalence approach or the index (Poincaré-Hopf) ap-
proach. It is well known that the index approach is more general than the others, and that
it provides an “almost if and only if” condition for uniqueness. We will therefore focus on

“Since neither ; nor x; depend on H 0. we drop superscript H° to ease notation.
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the index approach. Since we will be working with matrices, we will sometimes assume that
F ={1,...,F}, and that firm f’s set of products is N'7.

We know that establishing uniqueness in the pricing game is equivalent to establishing
uniqueness in the auxiliary game in which firms are simultaneously choosing their p/’s. We
also know that a profile 1 = () sex is an equilibrium of the auxiliary game if and only if
for every f € F,

¢ (1) = (' —1) (th> DD | |- X =0

keN’ g?}: keNf keN’
g

Therefore, all we need to do is show that map ¢ has a unique zero. By the index theorem,
this holds if the determinant of the Jacobian matrix of ¢ evaluated at pu is strictly positive
whenever ¢(1) = 0. We have shown in the proof of Lemma F that

Lo
fEF keN !

Moreover, if g # f, then

oo
W =) Y

8,u9 keEN9
Therefore,
H(p) (1 =) hene el (= 1) D penrr Tl
ey — | ) Tuen it H(y) e 1) Sy il
(W =) Y penn el (0" = 1) X iepn mihe - H(p)

) . ) e H(p)
(g(“ 1)k§f kh’“) det M ((l - (1 = 1) > kens T§q<—h§c))1<f<F> 7

where the second line has been obtained by dividing row f by p/ — 1 and dividing column
by > pens mihy, for every fin {1,..., F} and by using the F-linearity of the determinant.
By Lemma I,

e _ f_ 7“/ ! _1\F H(:u’)

dee o) (EW D2, k‘hk>< g ((E(“<uf—1>zkeNfr;<—h;>>)
B H(p)
S vy o))

9EF f#g

o1



— I _ B _1\F H(M)
(KHFW b2, ’“h’“>( g (g(“<uf—1>zkewg<—hz>)>
1
x (1= H(w)

rer it s e

_ <H (H(u) +( =1) ) Té(—h2)>> 1-> 1H(u)

\seF keN! fer 1+ (W =1) 3 ent Te(=h)

~~

>0

Therefore, we need to show that

f_
Z ol ZkeNf 7. (—=hy,)

— < 1 (xxxi)
fer L+ Zke/\ff ri(=hi)

whenever ¢(u) = 0. Notice that

(o) = 3 (1" = 1) 3 ens Ti(= -y hk) <0

uf 1
fer \1+ 5 2kens Tk< kEN'!

— Z (Mf — 1) ZkeNf (= hk Z hi | <0, since ¢(u) =

f— 1 2 Z f r!
fer \ 1+ kffm’; = =
f _1 7,,/ _h/
Z 1 uf 12(;:\# Tk()(/%:kli?/;’ )k(uf( kv)k)ﬂtf( %) B hi | <0,
fer + i S vl
f _ 1 T/ _h/
— Z (p )Zke/\ff 5 k/) _ Z i | < 0. by Lemma D.
T S 1)M
ferF uf 2 ZkeNf P kENT

Z p (0 —1) 2 kens Th(= Z he | <o,
L+ pf (0 — 1)—Zk€Nf (k)
fer AV > penf T keN' !

< Q' (H(u)) < 0 (see the proof of Lemma X).

Therefore, the index approach gives us the exact same condition as the aggregative games
approach.
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VIII CES and MNL Demands: Type Aggregation and
Algorithm

VIII.1 Formulas for m’ and S’ and Preliminary Lemmas

Applying the implicit function theorem to equations (13) and (14) yields:

g

(CES) m/(z) = — (xxxii)
1+ ("—’1)2 m(z)%x (1 — M)

m(ac)2 e—m(a:)

1+ m(z)2xe—m®)’

o=l (z)?2 (1 _ m(a«“)>a_1

(MNL) m/(z) (xxxiii)

Let @« = (0 — 1)/o in the CES case and o = 1 in the MNL case. Note that m =
/(o — (o —1)5) in the CES case, and m = 1/(1 — S) in the MNL case. Therefore, in both
cases, m = 1/(1 —aS), S = 1m=1 and §' = ™, This implies in particular that

(CES) é% =S(r)==x (1 - m((fx)) ) ,
(MNL) mgggg L S@) = ze @

This allows us to obtain expressions for S’(x), which do not explicitly depend on terms
(1—m(x)/o)"", (1 —m(x)/o)"? and e~
m(z) —1
“Zm(a) (1 + 7 s () - 1)
m(z) — 1
m(x) (1 +m(x)(m(z) — 1))

, (xxxiv)

(CES) xS'(z) =

(MNL) 25'(z) =

(xxxV)

Formulas (xxxiv) and (xxxv) are used at the end of Section 5.2.
Next, we use the fact that m = 1/(1 — aS) to replace m(z) in the right-hand side of
equations (xxxiv) and (xxxv). In the MNL case, we have that:

o SW 5w S@0-5e)
1+m?(z)S(x) 1+ (153(8))2 1—S(x)+ S(x)?

In the CES case, we have that:

xS'(z) =

1+ a?m?(x) 1_fn(x) ’
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S(x)

> 1 S@(ias@)’
I+a 1—aS@)?  1-5(z)
B S(z)
= 5@ )
1+ oism)a—as@y

)
_ S(@)(d = S5(x)(1 — aS(x))
1—S(x)+aS?(z)

Therefore, in both cases:

xS = S(xg(x) ) (xxxvi)
1+ or—sma—as@y
_ S(@)(1L— S(@))(1—aS()) N

1 —5(z) + aS%(z)
Let e(z) = xS5'(x)/S(x) be the elasticity of S. We prove the following technical lemmas:
Lemma XX. ¢/ < 0.

Proof. Using equation (xxxvi), we see that

1
S(z)
(1-S(z))(1—aS(z))

e(z)

_1—|—a

Since S’ > 0, it follows that ¢’ < 0. m
Lemma XXI. S” < 0. Therefore, S is strictly subadditive.

Proof. Using equation (xxxvi) and the fact that S(z) = z(1 — m(x)/o)°~! in the CES case
and m(x) = zexp(—m(x)) in the MNL case, we see that

o—1
b2
(CES) §'(z) = s
@ )
1+ o 5@y 1-as@y
e—m(x)

(MNL) - 8'(2) = 1 ors

Since m’ > 0 and S" > 0, it follows that S” < 0.
Let y > 0, and define £ : . € Ry — S(z+y) — S(x) — S(y). Note that limy & = 0, and
that
() =5 +y) - () <0,

since S” < 0. Therefore, ¢ is strictly decreasing, and £ < 0. O
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VIII.2 Proof of Proposition 11

Proof. The fact that m’ > 0, S > 0, and 7/(= m/) > 0 can be seen by inspecting equa-
tion (xxxii), (xxxiii), and (xxxvi). This proves point (i).
Applying the implicit function theorem to equation Q(H) = 1 yields:

g (1L
dH " >0 (xoxxvii)
= g g . XXXV
arl ¥ x5S (F)

Next, notice that

Tt H*

d(fzﬁ) ! (1 deH*) 1 ffﬁS’(fz—i)

— —~ 1- | >0,
) S\ ()

and that, for g # f,
d(%)  T9 dH* _
a1 H+*2 4T/t
Therefore, points (ii) and (iii) follow immediately by applying the chain rule.
Next, we turn our attention to point (iv). Let 29 = T9/H* for every g. Social welfare is
given by

0.

W* =log H* + ) (m(z?) — 1).

geEF

Therefore,

dW* 1 dH*
— 1— Im/ (9 e
T = I (de< me(x ))—l—m(x )),

1 S'(xf) P S’ (x9) N S’ (zF)
G (z 195 (a) (1 2,70 aS(mg»?) o as<xf>>2) ’
- S'(x)) WS 95 (8 1 B 1
THY, 295 (a9) (H gezf St ><(1 “as@)? —ozS(xg))2>) ’
B S’ () N s9(1 — s9)(1 — as9) 1 B 1
COH*Y e w95 (29) <1+ gezf 1 —s9+ afs9)? ((1—Czsf)2 (1—a39)2)> ’

S’ (zf) s9(1—s%)(1—as?) (o 1
7 H Sy 205 (@) (1 P2 o e asg>2>, ’
= (s9)
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where the second line follows from equation (xxxviii) and the fact that m = 1—1as’ and the

fourth line follows from equation (xxxvii).

If we can show that 1+>"7"  1,(s;) > 0 for every a € (0,1], n > 2, and (s;)1<i<n € [0,1)"
such that > " ; s; = 1, then we are done. Routine calculations show that 1,(s) > 11(s) =
Y(s) for every s. Therefore, all we need to do is show that 1+ Y"1, ¥(s;) > 0 for every
n > 2 and (s;)1<i<n € [0,1)" such that > | s; = 1. Note that ¢(s) = s*(s —2)/(1 — s + s?).
Routine calculations show that:

(i) < is concave on [0,1/2].
(i) ¥(0) = 0.

(iii) (s) + (1 — s) = —1 for every s € [0, 1].

(iv) 1(s) > —s (resp. ¥(s) < —s) if and only if s < 1/2 (resp. s > 1/2).

By point (iv), if s; < 1/2 for every ¢, then 1+, ¥(s;) > 0. Next, let (s;)1<;<, such that

n—1

s; > 1/2 for some 7. Assume without loss of generality that s,, > 1/2. Then, > " 's;, < 1/2.

We claim that 1 n—1
Z¢(31) > (Z sl) . (xxxix)

i=1 =1

To see this, let x,y € [0,1/2] such that 2 +y < 1/2, and define

§:1e0,y] =z +1) —v(z) —P().

By point (ii), £(0) = 0. By point (i), &’ < 0. Therefore, {(t) < 0 for every t. In particular,
Y(z+y) <Y(x)+1Y(y). Property (xxxix) follows by induction on n. Therefore,

1+Zw<3i) >1+79 <231> +(sn) =1+ ¢(1 —s,) + (1 —s,) =0,

where the last equality follows by point (iii). O

IX Comparative Statics

IX.1 Proof of Proposition 4

Proof. The first part of the proposition follows immediately from equation (2), Theorem 1
and Lemma H.

Next, we prove that largest and smallest (in terms of the value of H) equilibria exist.
If there is a finite number of equilibrium aggregators, then this is trivial. Next, assume
that there is an infinite number of equilibria. We have shown in the proof of Lemma I
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that Q(H) > 1 for H low enough and Q(H) < 1 for H high enough. Therefore, the set of
equilibrium aggregators is contained in a closed interval [H, H|, with H > 0. Put

" =sup{H € [H,H]: QH)=1}.

Let (H™)n>o be a sequence such that Q(H") = 1 for all n and H* — H . Since Q is

n—oo
continuous on [H, H], we can take limits and obtain that Q(H ) = 1. Therefore,

" =max{H € [H,H]: Q(H)=1}

is the highest equilibrium aggregator level. The existence of a lowest equilibrium aggregator
follows from the same line of argument. O

IX.2 Proof of Proposition 5

Proof. Let H° > 0. Given outside option H° > 0, H > 0 is an equilibrium aggregator level
if and only if Q(H, H°) = 1, where

H + Zfefzjef hj (TJ' (mf(H)))

QO(H, H°) = L

Let H” > H® > 0, and note that Q(H, H”) > Q(H, H°) for all H > 0. Let H and H (resp.
H and H') be the highest and lowest equilibrium aggregator levels when the outside option
is H° (resp. H”). We know from the proof of Lemma I that Q(H, H°) > 1 for all H < H.
Therefore, for all H < H,

Q(H,H”) > Q(H,H") > 1.

It follows that, when the outside option is H”, there is no equilibrium aggregator level weakly
below H. Therefore, H < H'. The fact that H < H' follows from the same line of argument.
This establishes point (iii) in the proposition.

Points (i), (ii) and (iv) follow from the fact that a firm’s profit is equal to its :-markup
minus one (Theorem 1), m’ is decreasing (Lemma H), and r; is increasing (Lemma D). [

IX.3 Comparative Statics with Respect to Marginal Costs

The goal of this section is to construct a discrete/continuous choice model (h;);en and a
firm partition F such that: (a) Pricing game ((h;)jen, F, (¢j)jen) has a unique equilibrium
for every (c;)jen; (b) There exists a marginal cost vector (¢;);jen and a product j such that,
starting from (c;);en, a small increase in ¢; raises the equilibrium aggregator level.

Fix an arbitrary pricing game ((h;) en, F, (¢j)jen). We start by deriving a necessary and
sufficient condition under which the aggregate fitting-in function shifts upward (locally) after
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an increase in ¢; (j € f).® In the following, we make explicit the dependence of function m/
on ¢; by writing m/(H, ¢;). We also write ry(u’, ¢) for every k. Differentiating equation (7)
with respect to ¢; and p/, and using equation (7) to eliminate H, we obtain:

or
om! m (mf — 1)(—}) 2

de; Zkef <’Yk+mf(mf_1)ark( 7’;)>.

It is straightforward to check that dr;/9c; > 0. Therefore, dm? /dc; < 0.

Next, let H/(H,c;) = > ks hy(ri.(m? (H,c;),c)) be firm f’s contribution to the aggre-
gator. Note that an infinitesimal increase in ¢; implies a local upward shift in the aggregate
fitting-in function if and only if 9H//dc; > 0. Let & = >, (’yk +mf(mf —1)5% a” b (— ’yk)>
and, as in Section VIL.1, w/ = (uf — 1)/p/. Recall that ar’“ = m (see the proof
of Lemma VIII). Then,

oH'  or; , Om! org .,
dc; 8cjh dc; Zaufhk’

kef
10r; , or ,
- (—(—hjmm( ) X k(- h>)
J kcf
1oy p dry, / N flof Ory, /
= o2 S (=) (et T = )T ) ) (! = DI 1)),
J kef
_—_7]'% s mf —1 (m! —1)6
¢ acj;%( i (1+1—wf0k * 1—wlt, )’
_ o PNl
¢ acj;%( 9J+1—wf1—wf9k '

If f={1,2} and j = 1, then 9H//dc; > 0 if and only if

Fop,—0
w 2 1
—70 —0 >0 1
71 1+72< 1+1—wf1—wf92) ; (x1)
where w/ = % functions v, and 6, are evaluated at price p; = r(m/(H,¢c1),c1), and

functions v, and 6 are evaluated at price py = 7o(m/ (H, c1), cz).

The next step is to find a product pair (hy,hy) € (H')?, a marginal cost pair (ci,c),
and an aggregator level H* > 0 such that firm f satisfies condition (b) in Theorem 2,
and condition (x1) holds. Let product hy be a CES product with quality as and o = 2:
h(pa) = aa/pa. Let hy(p1) = 1/log(1 + eP*). Routine calculations show that h; € H',

8To simplify the exposition, we assume that firm f sets finite prices for all its products. This condition
holds in the example we construct below.
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fi1 = Jig = 2, and p; is strictly increasing. Therefore, firm f = {1,2} satisfies condition (b)
in Theorem 2. Moreover, using the properties of CES products (6 = 2) allows us to simplify
condition (x1) as follows:

f _
=761 + 72 <—91 +1 c_uwf 12_ Qilf) >0, (xi)
Fix ¢; > 0 at some arbitrary value. We need to find H* > 0, as > 0 and ¢; > 0 such that
condition (x1) holds.

Let u/ € (1,2) and w/ = (uf —1)/u/. Note that, as ¢; tends to zero, r1(u’, ¢;) converges
to a strictly positive real p; = (0, /), which is the unique solution of equation ¢1(p;) = p/,
or, equivalently, x1(p;) = w/. At the limit, the term in parentheses in equation (xli) can then
be rewritten as follows:

xi(p1)  2—0i(p1)

vl = =0 T T TG

Studying function 1, we show that ¥ (p;) > 0 (and ¢;(p1) > 1) for p; high enough. Fix
such a py, and let uf = 1;(p1) and w/ = (u/ — 1)/p/. Then, by definition of p,,

w2 —0,(ri(p,0))
1 —wf 1 —2wf

—01(r (17, 0)) + > 0.

Therefore, by continuity,

w! 2= 01(r(p!, 1))

>0
1 —wf 1 —2wf

—01(r1 (!, c1)) +

for ¢; > 0 small enough. Fix such a ¢.
Let us now inspect the expression in the left-hand side of condition (xli) (recall that, since
good 2 is a CES product with o = 2, v5 = hy/2):

a2

(e €)1 (1)) + 2

LG w/ 2—91(7“1(Mf701)))
2r9(pt, co) '

1 —wf 1 —2wf

(ortratue0) +

Clearly, the above expression is strictly positive for high enough ay. Fix such an ay. Recall
that m/ (-, c;) is continuous, and decreases from i/ (= 2) to 1 as H increases from 0 to oo
(Lemma H). Therefore, there exists H* > 0 such that m/(H*,¢;) = p/. This concludes the
second step of our construction.

The last step is to construct a second firm, firm g, such that the pricing game between
firms f and g gives rise to a unique equilibrium, and the equilibrium aggregator level is H*.
Before constructing firm g, we state and prove the following lemma:

Lemma XXII. Let (h;)jen € (HY)Y such that fi; = i < oo and p; is non-decreasing
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for every j € N, and (¢j)jen € Rﬂr. Suppose that a monopolist owns all the products in
N, and that consumers have access to an outside option H® > 0. Then, the monopolist’s
profit-mazimization problem has a unique solution. The aggregator level at the monopo-
list’s optimum, I:I(HO), is a strictly increasing function of H°. Moreover, limg H = 0, and
lim,, H = 0.

Proof. We know from Lemma G that the monopoly problem has a unique solution for every
H® > 0. Therefore, function H () is well defined. The monopolist’s optimal (-markup,
denoted fi(H®) € (1,f), is the unique solution of equation (20). It is straightforward to
show, e.g., by applying the implicit function theorem to equation (20), that /i is continuous
and strictly decreasing. It follows that

H(H) = H+ > h(r;(4(H)))
JEN

is strictly increasing in H°. The monopolist earns ji(H®) — 1 at its optimum. Let m(-) be
the monopolist’s fitting-in function. Then, by definition of m, m(H(H®)) = a(H").

Clearly, lim,, H = co. By monotonicity, H = lim, H exists, and is non-negative. Assume
for a contradiction that H > 0. Then, for every H° > 0,

A(H®) = m(H(H) < m(H) < .

For every p € (1,1) and H® > 0, let w(u, H°) be the monopolist’s profit when it sets
t-markup p, and the value of the outside option is H°. Note that, for every HY > 0 and

pe (1, ),
w(p, H°) < u(H®) =1 <m(H) — 1.

Therefore,

T = sup m(u, H) <m(H) -1 < i — 1.
H9>0, pe(1,i)

Moreover, using the definition of ¢-markup g and function ~; (j € N), we can rewrite

7(u, HY) as follows:
> jen i(ri(p)

W(M7HO) = MHO +Zj6/\/hj(rj(u})).

Note that, for every p € (1, ji),

_ > jen Vilri(m) > jen V(1) =12 en(ri(w)  p—1
T2 p =1 > p =p

djen hi(ri(w)) " X ien pi(ri(p)) v (ri (i)

where the second inequality comes from the fact that, for every j, p; is non-decreasing and

— Y

i > jen Vi(ri(u) fi

lime, p; = fi/(—1) by Lemma III-(f). Taking the limit as p tends to i allows us to conclude
that 7 > i — 1, which is a contradiction. O

Firm f satisfies all the assumptions in Lemma XXII. Therefore, function H (1) is a
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bijection from (0,00) to (0,00), and there exists a unique H° > 0 such that H(H®) = H*.
By definition of H, this means that

H* = H 4+ hi(ri(m! (H*, 1), ck)).-
kef

Next, we construct a firm ¢ such that, when the aggregator level is H*, firm ¢’s contribution
to the aggregator is H°. To do so, we rely on the results derived in Section 5.1. Let g be
an arbitrary multiproduct firm selling only CES products (with a common o). Denote firm
g’s type by T9 > 0. We know that, when the aggregator level is H*, firm ¢’s contribution to
the aggregator is S(T9/H*)H*. Moreover, S(-) is continuous and strictly increasing, and it
is straightforward to show that limg.S = 0 and lim., S = 1. Therefore, there exists a unique
T9 such that S(T9/H*)H* = H°.

We can conclude. We have constructed a multiproduct duopoly pricing game with two
firms, f and g. By construction, firm f satisfies condition (b) in Theorem 2. Since firm g only
sells CES products with a common o, firm g satisfies condition (a) in Theorem 2. Therefore,
the pricing game between firms f and ¢ has a unique equilibrium for every marginal cost
vector for firm f and for every value of T9. When firm f’s marginal costs are equal to ¢;
and ¢y, as defined above, and firm ¢’s type is T 9. the equilibrium aggregator level is H*. An
infinitesimal increase in the value of ¢; induces a local upward shift in the aggregate fitting-in
function. Since that function is has a finite limit when H — oo and has a unique fixed point,
it follows that the equilibrium value of the aggregator increases. Therefore, consumer surplus
increases, and both firms’ profits decrease.

X Applications: Merger Analysis and International Trade

X.1 Static Merger Analysis: Proof of Proposition 12

)) (xlii)

TM is well-defined, since S is strictly increasing and has range (0, 1).
If TM = TM, we have:

Ee() () 5o ()

fer

Proof. Let

. Tf
M _ *Q—1
TV =H"S (E S(H*

fez

where the first equality is the pre-merger equilibrium condition whereas the second equality
follows from TM = TM_ Therefore, H* = H*, i.e., the merger is CS-neutral if 7™ = T™. As
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S'(:) >0, if TM > TM e have

()

feo

Tf
> 1
o)

implying that H* > H*, so the merger is CS-increasing. Similarly, if 7" < 7™ then
H* < H*, so the merger is CS-decreasing.

Next, we note that a CS-neutral merger involves synergies in that ™ > > rer T f. Sup-
pose otherwise that 7™ < 37 ez T7. Then,

M 7!
S(H*> gs(ZH*> <ZS<
where the first inequality follows from S’(-) > 0 and the second from Lemma XXI. But then

Tf
H*

fex fez

the merger would be CS-decreasing, a contradiction. Hence, ™ > > ez TS,
We now show that a CS-neutral merger is profitable. Recall that, under CES demands,
m=m—1and S = ﬁmT_l It follows that m = ”U;lmS . Similarly, under MNL demands,

m =mdS. In both cases, 7 is proportional to mS. Note that

™ ™ ™ TS TS Tf
S = S S
fex fez
where the equality follows because the merger is CS-neutral, and the inequality follows be-
cause T™ > T/ for every f € T and m/(-) > 0. Hence, merger M is profitable if TM = T,

Next, suppose that the merger is CS-increasing, i.e., T™ > ™, Then, by Proposition 11-(ii),
the merged firm makes a strictly higher equilibrium profit than when its type is 7. This

implies in particular that the merger is profitable.

Finally, we establish the existence of threshold T™. Note first that, if 7™ = 7M™ then
the merger is W-increasing, since it raises the joint profits of the merging parties, but affects
neither consumer surplus, nor the outsiders’ profits. On the other hand, it is straightforward
to show that, as 7™ tends to zero, H* converges to the equilibrium aggregator level which
would prevail if only the outsiders were present. Social welfare in that case is equal to the
limit of social welfare pre-merger as T tends to 0 for every f € Z, which, by monotonicity,
is strictly lower than equilibrium social welfare when T > 0 for every f € Z. Therefore, the
merger is W-decreasing if 7™ is low enough. By the intermediate value theorem, there exists
TM such that the welfare is W-neutral if 7 = 7M. By monotonicity of social welfare, the
merger is W-increasing if 77 > TM | and W-decreasing if T < TM . ]

X.2 Static Merger Analysis: External Effects

We first derive formulas for #:
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Lemma XXIII. n(H) is given by:

n(H) = ~1+ 3 ¢uls’),

feo
where a = (o0 — 1) /o in the CES case, a =1 in the MNL case, s/ = S(T?/H), and

as(l —s)

bals) = (1—as)(l—s+ as?)’

Vs e (0,1).

Proof. This follows from the definition of 7 and from the fact that

) since m(z) = o

(1 —aS(z))* 1-aS(z)’

_ a S(x)(1 = S(x)(1—aS(x) ' )

N (1 — aS(g; )2 1 — S(:U) i OzS(x)Q , using equation (Xxxvu),
aS(x)(1 - S(x))

(1 —aS(2))(1 - S(z) + aS(2)?)’

(
= 0a(5(2))- 0

xm/(z) = za

Next, we study the properties of function ¢, (s):
Lemma XXIV. Function (s,a) — ¢o(s) has the following properties:
(a) For every s € (0,1), o+ ¢o(s) is strictly increasing.
There ezists & € (0,1) such that:
(b) If a« < &, then ¢ (s) < s for every s € [0,1].

(¢) If a > @&, then there exist 0 < s(a) < S(a) < 1 such that, for every s € [0,1], ¢a(s) > s
if and only if s € (s(a),s(a)).

Moreover, if a > &, then there exist thresholds s*(a) € (0,1] and 3(c) € (0,1) such that:?
(d) s ¢a(s) is strictly increasing on (0, s*(«)) and strictly decreasing on (s*(a), 1).
(e) s Pqo(S) is strictly convex on (0,5(a)) and strictly concave on ($(a),1).

Proof. We prove the lemma (analytically) using Mathematica. Mathematica files are avail-
able upon request. O

9More on thresholds s(a), 5(a), s*(a) and §(«):
e In the MNL case, s(1) = 0 and 5(1) = 1. Otherwise, both thresholds are interior.
e In the MNL case, s*(1) = 1. Otherwise, 0.68 < s*(a) < 1.
e 0.28 < §(w) < 1.
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The following lemma is the final step toward proving proposition 13:

Lemma XXV. Let a = %(\/ﬁ —7)~0.82. If « < @, then any infinitesimal CS-decreasing
merger has a negative external effect. If instead o > &, then there exist infinitesimal CS-
decreasing mergers that have positive external effects, and infinitesimal CS-increasing mergers
that have negative external effects.

Proof. Define

S = US”, where §" = {s € [0,1]" : Zsi <1} Vn>1,
i=1

n>1

S= US”, where S = {s € [0,1]" : Zsizl} Vn > 1,

n>1 =1

and'®
V(o) =su o(8i), Ya € (a,1].
(@) =513 als). Yo € (a1
Clearly, since ¢o(s) > 0 for all s, we have that ¥(«) = sup,cs ), ¢al(s;). Next, we claim
that W(a) = sup,cg Z?Zl bu(s;). To prove this, we show that, for every s € S, there exists

s' € 8% such that \
> 6als) <D dalsh).
i i=1

If s belongs to S™ for some n < 4, or, more generally, if s has at most four components
different from zero, then this is obvious. Assume instead that s has five or more components
different from zero. Assume without loss of generality that s € S" for some n > 5, that
s; > 0 for every ¢, and that the components of s; have been sorted in increasing order. We
construct s’ by induction.

Let us first define a function &, which takes as argument a profile of market shares s € S™
sorted in increasing order and with strictly positive components, and returns a profile of
market shares £(s) sorted in increasing order and with strictly positive components, such
that either £(s) € S, or £(s) € S*1. ¢ is defined as follows:

o If 5, > 3() (or if s € SY), then £(s) = s.
o If 55 < §(a), then do the following:

— If 51 + s < §(a), then form the (n — 1)-dimensional vector with first component
$1 + s2 and remaining components (s;)s<i<n, and sort that vector in increasing
order to obtain £(s).

10Notation: Let s € S and n > 1 such that s € S™. We write

n

=1
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— If instead s; + so > §(«), then form the n-dimensional with first component
s1+ s2 — §(a), second component §(«), and remaining components ($;)s<;<n, and
sort that vector in increasing order to obtain £(s).

Note that, since ¢,(+) is convex on [0, §(«)], we have that, for every § € S
Z ¢a(§z> S Z ¢o¢ ((€<§)>2)

We can now define sequence (s¥)>¢ by induction: s® = s; s**1 = £(s*) for every k > 0.
Let m* denote the number of components of s* greater or equal to §(«), and n* denote the
dimensionality of vector s*. By definition of ¢ and of sequence (s¥);>¢, sequence of integers
(m*)>0 (resp. (n*)r>0) is non-decreasing (resp. non-increasing) and bounded above by n
(resp. bounded below by 1). Therefore, those sequences of integers are eventually stationary:
There exists K > 0 such that m* = m**! and n* = n**! for every k > K. It follows that

(s%)r>0 is also stationary after K. Let s’ be the stationary value of sequence (s¥)g>o. Then,

by induction on k,
Z Pa(si) < Z Pa(s})-

Moreover, s’ has at most one component in [0, §(«)) (for otherwise, £(s") would not be equal
to s’). Let n’ be the dimensionality of vector s’. Then,

n/

1=) s> (n'—1)ia) > 028 x (n' — 1),

=1

where the last inequality follows by Lemma XXIV (see footnote 9). It follows that n’ < 4.
Having constructed s’, we can conclude that

n

U(a) = sup Z Galsi)- (xliii)

SE§4 i=1

By continuity of ¢, and by compactness of S*, the maximization problem defined by (xliii)
has a solution. Let s be such a solution. Then, by the convexity argument used in the
construction of §’, s has a most one component in (0, $(«)). Moreover, since ¢, is strictly
concave on [§(«), 1], the components of s that are greater or equal to §(a) must be equal to
each other. It follows that

T(a) = max max <¢a(:1:) + bu(l — 2), du(@) + 260 <1;) () + 300 (1 - f”)) |

z
z€[0,1] 2 3
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We (analytically) solve the above maximization problem using Mathematica. We obtain:

180 : 6
V() = {18—3a—a2 if o< 7,

ﬁzg otherwise.

It is straightforward to check that W is strictly increasing, and that ¥(&) < 1 < W(1). The
unique solution of equation ¥(«) =1 on interval (&, 1] is @ = 3(v/57 — 7).

We can conclude. Assume first that o < &. Then, by Lemma XXIV-(b), > Pa(s?) <
> feo s/ < 1 for every profile of outsiders’ market shares (s/);co. Therefore, any infinitesimal
CS-decreasing merger must have a negative external effect.

Next, assume that o € (&, @]. Then, for every profile of outsiders’ market shares (s/) rco,

D 6als") < Ga(l=5) + > ga(s’) < W(a) < W(a) = 1.

feo feo

Therefore, any infinitesimal CS-decreasing merger must have a negative external effect.
Finally, assume o > &. We first show that there exists an infinitesimal CS-decreasing
merger that has a negative external effect. Let O = {1} and Z = {2,3}. Since ¢,(-) is
continuous and ¢,(0) = 0, there exists s € (0,1) such that ¢,(s) < 1. Let T' = S~!(s),
and 7?2 = T3 = §—! (%) Then, by construction, the pre-merger equilibrium aggregator

3 = % The external effect

level is H = 1, and market shares are as follows: s! = s, s2 = s
of an infinitesimal and CS-decreasing merger between firms 2 and 3 is given by ¢,(s) — 1,
which is strictly negative by construction. Next, we claim that there exists an infinitesimal
CS-decreasing merger that has a positive external effect. Since W(a) > 1, there exists
(8i)1<i<n € (0,1]" such that > ;s; <1and Y . | da(s;) > 1. By continuity, for £ > 0 small
enough, Y7 da(si—e) > 1. Let O ={1,...,n}, ZT={n+1,n+2}, s =s; — e for every
i€0, s =1 (1 -2 s’j> for i € Z, and T* = S~!(s") for every i € ZU O. Then, by
construction, an infinitesimal and CS-decreasing merger between the insiders has a positive
external effect.

Since any CS-decreasing merger can be decomposed into the integral of infinitesimal CS-
decreasing mergers, and since a CS-decreasing merger can be made infinitesimal by tweaking
the post-merger type of the merged entity, the above results extend immediately to non-
infinitesimal mergers: If a < @, then any CS-decreasing merger has a negative external
effect; If a > @, then there exist CS-decreasing mergers that have positive external effects,
and CS-decreasing mergers that have negative external effects. O]

Proposition 13 follows immediately from Lemmas XXIV and XXV.

Finally, we formalize and prove our statements on the impact of the concentration of
outsiders’ market shares. Fix a > @. Assume without loss of generality that O = {1,...,n}
with n > 2. An outsider industry structure is a vector of outsiders’ market shares s €
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0, 8(x)]™ such that >"  's; < 1. To every outsider industry structure s, we associate a
discrete probability distribution Ps(-), which is defined as follows:

1
Ps(x)zﬁl{ie{l,...,n}: si=z}|, VzeR

Note that the mean of probability distribution Pj is equal to #

We now use these associated probability distributions to define a partial order on the set of
outsider industry structures. We say that outsider industry structure s’ is more concentrated
than outsider industry structure s if Ps and Py have the same mean (i.e., the aggregate
market shares of the outsiders are the same in both industry structures) and Py second-order
stochastically dominates Py. For instance, with n = 2, industry structure (0.05,0.15) is more
concentrated than industry structure (0.1,0.1).

Suppose that outsider industry structure s’ is more concentrated than outsider industry
structure s. Then, since ¢, is convex on a set which contains the supports of Ps(x) and

Ps/ (ZL’),
/¢a(x)dPs/ (x) > /qﬁa(a:)dPs(x).
R R
Using the definition of Ps and Py, we obtain:

> Souls) 2 3 ()

i=1 i=1

Therefore, 7 is higher with outsider industry structure s’ than with outsider industry structure
s. This implies that the external effect of an infinitesimal CS-decreasing merger is more
likely to be positive when the outsiders have more concentrated market shares. Note that,
by convexity of function = ++ 22, the industry HHI is higher under industry structure s’ than
under industry structure s.

X.3 Dynamic Merger Analysis: Proof of Proposition 14

Proof. Let T be the set of insiders associated with merger M. Differentiating equation (xlii),
& ™ dTM:TMS, ™\ TfS, Tf |
H* | dH*  H* H+* H* H~*
fez
™ ™ 7! T!
() () 5
fex
™ T/ T! T/
o <H> S (i) -2 (7) s ()
feT fez
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we obtain




-5 (() () ()

where the third line follows by definition of 7™ and the last line follows from Lemma XX
and from the fact that 7% > T for every f € 1. O]

X.4 Dynamic Merger Analysis: Dynamic Optimality of Myopic
Merger Approval Policy

Consider two mergers, M; and M,, and assume that these mergers are disjoint, i.e., no firm
takes part in both.

Proposition V. If merger M; is CS-nondecreasing (and hence profitable) in isolation, it
remains CS-nondecreasing (and hence profitable) if another merger M;, j # i, that is CS-
nondecreasing in isolation takes place. If merger M; is CS-decreasing in isolation, it remains
CS-decreasing if another merger M;, j # i, that is CS-decreasing in isolation takes place.

Proof. Suppose M; is CS-nondecreasing in isolation, which means that 7™ > 7M1 If the
CS-nondecreasing merger M; takes place, the equilibrium value of the aggregator H* weakly
increases, and so — by Proposition 14 — the cutoff M weakly decreases. As T was
initially above the cutoff, it therefore remains so after M; has taken place, i.e., M; is still CS-
nondecreasing. A similar argument can be used to show the sign-preserving complementarity
for mergers that are CS-decreasing in isolation. The assertion on profitability follows from
Proposition 12. O

Proposition V1. Suppose that merger My is CS-nondecreasing in isolation whereas merger
My is CS-decreasing in isolation but CS-nondecreasing once merger My has taken place.
Then, merger My is CS-increasing (and hence profitable), conditional on merger My taking
place. Moreover, the joint profit of the firms involved in M is strictly larger if both mergers
take place than if neither does.

Proof. As in the proof of Proposition 2 in Nocke and Whinston (2010), reverse the order
of the two mergers: Consider first implementing merger M, (step 1) and then merger M,
(step 2). As consumer surplus must, by assumption, be (weakly) higher after both mergers
have taken place than before, and because consumer surplus (strictly) falls at step 1 (again,
by assumption), consumer surplus must (strictly) increase at step 2. That is, M; is CS-
increasing, conditional on M, taking place. By Proposition 12, this implies that the joint
profit of the firms in M; must go up at step 2. The joint profit of the firms in M; must go up
at step 1 as well, as the CS-decreasing merger at step 1 induces a reduction in the equilibrium
value of the aggregator, which benefits all outsiders to that merger by Proposition 11-(i). [
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We now embed our pricing game in a dynamic model with endogenous mergers and merger
policy, as in Nocke and Whinston (2010). There are T periods, and a set { M, Ms, ..., Mk}
of disjoint potential mergers. Merger M) becomes feasible at the beginning of period ¢ with
probability px: € [0, 1], where ), pr < 1. Conditional on becoming feasible, the post-merger
type of the merged firm My, is drawn from some distribution C;. The feasibility of a particular
merger (including its efficiency) is publicly observed by all firms. In each period, the firms
involved in a feasible and not-yet-approved merger decide whether or not to propose their
merger to the antitrust authority. Bargaining is efficient so that the merger partners propose
the merger if and only if it is in their joint interest to do so. Given a set of proposed mergers,
the antitrust authority then decides which mergers to approve (if any). An approved merger
is consummated immediately. Finally, at the end of each period, the firms play the pricing
game, given current market structure. All firms as well as the antitrust authority discount
payoffs with factor § < 1.

Following Nocke and Whinston (2010), we define a myopically CS-mazimizing merger
policy as an approval policy, where in each period, given the set of proposed mergers and
current market structure, the antitrust authority approves a set of mergers that maximizes
consumer surplus in the current period. The most lenient myopically CS-mazimizing merger
policy is a myopically CS-mazimizing merger policy that approves the largest such set (i.e.,
including CS-neutral mergers). (As shown in Nocke and Whinston (2010) such a policy is
well-defined.)

The following proposition shows that Nocke and Whinston (2010)’s result on the dynamic
optimality of a myopic merger approval policy carries over to our multiproduct firm setting:

Proposition VII. Suppose the antitrust authority adopts the most lenient myopically CS-
maximizing merger policy. Then, all feasible mergers being proposed in each period after
any history is a subgame-perfect Nash equilibrium for the firms. The equilibrium outcome
mazximizes discounted consumer surplus (indirect utility) for any realized sequence of feasible
mergers. Moreover, for each such sequence, every subgame-perfect Nash equilibrium results
i the same optimal sequence of period-by-period consumer surpluses.

Proof. The result follows from Propositions 12, 14, V, and VI, which are the analogues of
Corollary 1 and Proposition 1 and 2 in Nocke and Whinston (2010). See Nocke and Whinston
(2010) for details. O

X.5 Trade Analysis: Results on Productivity, Inter- and Intra-
Firm Size Distributions, and Welfare

Inter-firm size distribution

Proposition VIIL. Suppose demand is either of the CES or MNL form. Then, for TS > T9,
the ratio S(T'/H)/S(T9/H) is increasing in H. That is, a trade liberalization leads to a
smaller fractional decrease in the market share of a larger than a smaller firm.
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Proof. We have

QL
n
el

if and only if
T ar (TS
o) g )
s(r) 5
By Lemma XX, ¢/(x) < 0 for all z, where ¢(z) = 25" (x)/S(s). Hence, the inequality holds if
and only if T > T9. O]

Proposition IX. Suppose demand is of the MNL form. Then, for TT > T9, the sales
ratio between firms f and g is increasing in H if and only if ¢(s’,¢’) < ¢(s9,¢9), where
= S(T"/H) and

Ak %k

i e X

c = E e | %
J J

kei Ejeie 8

are, respectively, the market share (in volume) and the (output-weighted) average marginal
cost of firm i € {f, g}, and

. 1-s S
¢<S"’>=m(1‘s+m>

A

18 decreasing in s and c.

Proof. Firm f’s sales can be written as

1 a; — Dpj
Sales’ = — (ij exp —~ ]) ,
H Jjef A
1 o a; — C;
—— f ) J J
—H<Z()\u +cj)e ™ exp 3 ),

Jef

f
= Lot (ol + ).

The fact that s/ = %f e and ul = ﬁ allows us to rewrite firm f’s sales as follows:

Sales’ = s/ (1—)\sf C )
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The logarithmic derivative of sales with respect to H is given by:
dlog Sales’ B ds? ( 1 n 1 )
— g\ of ef(1—sh)2 |
dH dH \ s (1—sf)+ =20
T/ T/ 1 1
= (F> (s_f Tas 5f(1—5f>2> ’
(1—sf)+ LT

1 T/ 1 n 1
=——¢|—= || =
H \ H st (1 — sty 002 )7

where ¢ is the elasticity of S. Recall that (see equation (xxxvii))

N )
1-5+52
It follows that
dlog Sales’ _ 1 1—sf (1—sf+ :sf )
dH H1—sf+sf2 14.@
) —5(s7 ) ”
and hence, ;
dlog(Sal;lsq/Salesg) _ % (6(%, &%) — d(s7, 1))
It can be verified that ¢ is decreasing in both arguments. O]

Intra-firm size distribution

Proposition X. Suppose demand is either of the CES or MNL form. Then, for j,k € f,
the market share ratio s;j/sy is independent of H. That is, a trade liberalization leads to the
same fractional decrease in the market share of all products offered by the same firm.

Proof. Consider first the case of CES demand. The ratio of market shares (in value) between
any two products j, k € f is given by

-0 ¢ l=o 1-o
ﬁ:&<&) _ % (T :&@)
Sk g \Dk ak \ 7775 ag \ Ck
Hence, the market share ratio is independent of H.
Consider now the case of MNL demand. The ratio of market shares (in volume) between
any two products 7,k € f is given by

a;—pj aj;—cj a

J
5 e A eA"‘f e

—c.

= =
Sk e

_ ap—cp )
X e X p! X
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which is independent of H. O

Proposition XI. Suppose demand is of the MNL form. Then, for j,k € f, with c; > ¢, the
sales ratio (p;s;)/(prsk) is increasing in H. That is, within each firm, a trade liberalization
leads to a larger fractional increase in the sales of a product that is produced at higher marginal
cost.

Proof. The ratio of sales of any two products 7,k € f is given by

a;—c;

Pisj _ ¢t M e
PrSk L+ )\qu eak)\ck .

As an increase in H induces a decrease in the markup p/, this ratio is increasing in H if and
only if ¢; > ¢4. m

Productivity. We argue in the paper that a monotone transformation of firm f’s type pro-
vides a theoretically sound measure of that firm’s productivity. We now prove this assertion
formally.

The composite commodity approach. Assume that demand is of the CES form,
and let @« = (0 — 1)/o. The composite commodity produced by firm f has been defined

1
as QF = (Z ies J q]) . Suppose that firm f has been tasked to produce a certain level
@/ of composite commodity in a cost-minimizing way. Then, firm f solves the following
cost-minimization problem:

Q-

mln ciq; st QF = al"‘o‘
i 3 (>

Jjef

The first-order condition for product ¢ € f is:

~AQ Al =0,

where A is the Lagrange multiplier associated with the output constraint. Multiplying the
first-order condition by ¢; and adding up, we obtain: ) jef Gl = AQ.

Moreover,
1

qi = (é) - a;Q’.
C;

“S e =Y (g)ﬁ&ai(@wa-

ief icef

Therefore,
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It follows that

ANTO= AT =) e T =) a7 =T

icf ief

Therefore, A = (T )i Recall that A = % This implies that firm f’s implied

production technology for the composite commodity has constant returns to scale, and that
1

firm f’s constant unit cost is equal to (T7/)1==. Put differently, firm f’s productivity for the

composite commodity is (T )ﬁ

The indirect utility approach. Firm f is tasked to deliver inclusive value V7 in a
profit-maximizing way. That is, firm f solves maximization problem

K
max Z(pj - cj)eTfJ s.t. logZhj(pj) =V,

(pjlies et e

It is straightforward to show that firm f’s profile of prices must satisfy the constant (-markup

property: There exists p/ such that p; — ¢; = Au/ (resp. apjz:cj = u/) in the MNL (resp.
J
CES) case for every j € f.
The optimal value of i/ is pinned down by the inclusive-value constraint:

log Y hy(r;(pf)) = V7.

Jef

1

This yields pf = logT/ —V/ in the MNL case, and p/ = o <1 — (Tf e_Vf> 1_0) in the CES

case. Plugging this value of 1/ into the objective function, we find that firm f makes a profit
1

of logT/ — V/ in the MNL case, and (o — 1) <1 — (Tf e_Vf> 1_U> in the CES case. In both

cases, a firm with a higher 7/ delivers inclusive value V/ in a more efficient way.

Next, we study the impact of trade liberalization on domestic industry-level produc-
tivity:

Proposition XII. With CES or MNL demands, a trade liberalization raises the domestic
mdustry-level productivity.

Proof. Assume without loss of generality that F = {1,...,n}, and that T* < ... <T". Let
(s7)1<f<n (vesp. (s)1<j<n) be the pre-trade liberalization (resp. post-trade liberalization)
vector of market shares. Define also ® and @' as the pre- and post-trade liberalization
industry-level productivity, respectively. By Proposition VIII, we have that s/s9 < s/s9
whenever f < g.

For every 1 < f < n, define w/ = sf/ZZ:1 s9 and w'/ = s/ > y—157. We interpret
w = (w!)1<j<p, and w' = (w')1< <, as discrete probability distributions over {1,...,n}. We
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claim that w’ first-order stochastically dominates w. To see this, let F' € {1,...,n}, and
note that

F

Z ¥ Zfl Zf 13f
: = J

— Zf s Zf st

<=>Z Y SQ<Z >
g=F+1 f=1 g=F+1

n

IM’TJ

ERE

(s’fsg — st'g) <0,

f=1g=F+1 20

which holds true by Proposition VIII. This confirms that w’ first-order stochastically domi-
nates w.

Since functions ¢(-) and f ~— T are increasing, it follows that

:Zw'fgp(Tf)Zwago(Tf)zcb. O
f=1 f=1

Welfare

Proposition XIII. Under monopolistic competition with CES or MNL demands, a trade
liberalization raises domestic welfare.

Proof. Recall that, under monopolistic competition, every firm sets a c-markup of 1. If
demand is CES, then

1-o Pk—Ck 1-0 (o—1 1-o
W(H®) = log <H°+Zaj c; ( 1) ) +ZU_1Zk€fU o akck_ (af )

1—o
JEN feF o H° +ZJENCLJ J 7 (T) ’

0. 1 ; aﬁzfefo
=log (H'+am= Y T/ | +a = :

e HO+at=a} T/

where a = (0 — 1) /o, and

H+(1-a)ar=ad ;T

W'(H) = 1 .
(HO tars Zfefo>

> 0.

Under MNL demand,

k=% _1

Pr—Ck e A e
W(H®) = log (HO +Y e ) +> Zues 5 T

JEN rer H +Z€Ne e~ 5t
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e 1T/
:log <H0+612Tf) 4 Zfef

04 o1 '
fer HO ety xTf

Therefore,
HO
W'(H?) = > 0.

2
(7 + 1 Sy
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X1 Table of Symbols and Notations

Market-level notations

H Aggregator, sufficient statistic for consumer surplus
I'(H) Aggregate fitting-in function
Q(H) I'(H)/H
N Set of products
F Set of firms
Firm-level notations
w! Firm f’s t-markup
m! (H) Firm f’s fitting-in function
i max k € fji; The highest (-markup that firm f can sustain
w’ (u = 1)/n
T/ Firm f’s type (CES / MNL demands)
Product-level notations
H The set of C3, strictly decreasing and log-convex functions from R, to R,
H* The set of functions in H that satisfy Assumption 1
hy Exponential of indirect subutility derived from product k
—h, /i Conditional demand for product k&
hi/ D jen i Choice probability for product k
Lk prhy(pr) /(=R (pr)), elasticity of monopolistic competition demand
[k lim, ¢, the highest (-markup that product k can sustain
Vi hi /1y,
Pk hie /i
O M/ Vi
Xk (e = 1)/ (wk)
Vi (pr) 1k (pr)(Pr — ¢k)/Dr, t-markup on product k
re(pd) v, '(u), pricing function
ppe (1), product k’s price under monopolistic competition
P, inf{pr > 0: w(pr) > 1}
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